Learning Treatment Effects under Covariate Dependent Left Truncation and Right Censoring

Yuyao Wang

Department of Mathematics, UC San Diego yuw079@ucsd.edu

Joint work with:

Andrew Ying, Google Ronghui (Lily) Xu, UC San Diego

Left truncation - selection due to delayed entry

- Example: aging studies.
 - Age is the time scale of interest.
 - Subjects enrolled at various ages instead of at the time origin (time at birth).

Figure: A toy example for aging study; ' \times ' - enrollment times; dots - times to events.

Left truncation - mathematical formulation

- Time-to-event: T^*
- Left truncation time: Q^* usually the study enrollment time
- T^* is **left truncated** by Q^* if only subjects with $T^* > Q^*$ are included in the data.
- \bullet Subjects with early event times tend not to be captured \rightarrow selection bias

Examples:

- Aging studies age is the time scale of interest
- Pregnancy studies
- Some cancer survivorship studies, e.g., SJLIFE.

HAAS data - Triple biases

- T^* age to moderate cognitive impairment or death Q^* age at entry of HAAS Only subjects with $T^* > Q^*$ are included.
- Triple biases:
 - Selection bias from left truncation early event times are underrepresented.
 - Confounding in observational data.
 - Informative right censoring.

First focus on handling left truncation

Literature for handling left truncation

Under random left truncation / quasi-independence assumption

- Likelihood-based approaches.
- ! Strong assumption may be violated in practice.
 - e.g., In HAAS data,

conditional Kendall's tau test for quasi-independence (Tsai, 1990): p-value = 0.0014.

Literature for handling left truncation

Under random left truncation / quasi-independence assumption

- Likelihood-based approaches.
- ! Strong assumption may be violated in practice.
 - e.g., In HAAS data,

conditional Kendall's tau test for quasi-independence (Tsai, 1990): p-value = 0.0014.

Under covariate dependent left truncation

- In regression settings: Cox model with risk set adjustment.
- For marginal survival probability: inverse probability weighting (IPW) (Vakulenko-Lagun et al., 2022).
- ! Sensitive to misspecification of the truncation model; inefficient.

Our contributions

- Derive the efficient influence curve (EIC) for the expectation of a transformed event time.
- Construct EIC-based estimators that are shown to have favorable properties.
 - Model double robustness
 - Rate double robustness
 - Semiparametric efficiency
- Provide technical conditions for the asymptotic properties that appear to not have been carefully examined in the literature for time-to-event data.
- Our work represents the **first attempt** to construct doubly robust estimators in the presence of left truncation.
 - Does NOT fall under the established framework of coarsened data where doubly robust approaches were developed.

Notation and estimand

- Q left truncation time; T event time; Z covariates
- Variables with '*' full data, i.e., if there were no left truncation;
- Variables without '*' observed data: only contains subjects with $Q^* < T^*$. O = (Q, T, Z).

Notation and estimand

- Q left truncation time; T event time; Z covariates
- Variables with '*' full data, i.e., if there were no left truncation;
- Variables without '*' observed data: only contains subjects with $Q^* < T^*$. O = (Q, T, Z).
- Estimand: $\theta := \mathbb{E}\{\nu(T^*)\}$, where ν is a given function.

• e.g.,
$$\nu(t) = \mathbb{1}(t > t_0) \implies \theta = \mathbb{P}(T^* > t_0)$$
 (survival probability).

• e.g., $\nu(t) = \min(t, t_0) \implies \theta = \mathbb{E}\{\min(T^*, t_0)\}$ (restricted mean survival time, RMST).

Assumptions

Orditional quasi-independence:

 Q^* and T^* are conditionally independent given Z^* on the observed region $\{t > q\}$. - The dependence of Q^* and T^* can be explained by measured covariates.

- **2 Positivity**: $\mathbb{P}(Q^* < T^* | T^*, Z^*) > 0$ a.s..
- **3** Overlap: There exist $0 < \tau_1 < \tau_2 < \infty$ and constants $\delta_1, \delta_2 > 0$ such that $T \ge \tau_1$ a.s. and $Q \le \tau_2$ a.s. in the full data; $1 F(\tau_2|Z) \ge \delta_1$ a.s., and $G(\tau_1|Z) \ge \delta_2$ a.s..

Efficient influence curve and double robustness

• Efficient influence curve: $\varphi(O) = a$ constant factor times

$$U(\theta; F, G) = \underbrace{\frac{\nu(T) - \theta}{G(T|Z)}}_{\text{IPW}} - \underbrace{\int_{0}^{\infty} m_{\nu}(v, Z; F) \cdot \frac{F(v|Z)}{1 - F(v|Z)} \cdot \frac{d\bar{M}_{Q}(v; G)}{G(v|Z)}}_{\text{Augmentation}}$$

- **F**: the conditional CDF of
$$T^* \mid Z^*$$
.

- **G**: the conditional CDF of $Q^* \mid Z^*$.

(both can be nonparametrically identified from the observed data distribution)

-
$$m_{\nu}(v, z; F) = \mathbb{E}_{F}\{\nu(T^{*}) - \theta \mid T^{*} < v, Z^{*} = z\}.$$

• The semiparametric efficiency bound : $\mathbb{E}(\varphi^2)$.

Efficient influence curve and double robustness

• Efficient influence curve: $\varphi(O) = a$ constant factor times

$$U(\theta; F, G) = \underbrace{\frac{\nu(T) - \theta}{G(T|Z)}}_{\text{IPW}} - \underbrace{\int_{0}^{\infty} m_{\nu}(v, Z; F) \cdot \frac{F(v|Z)}{1 - F(v|Z)} \cdot \frac{d\bar{M}_{Q}(v; G)}{G(v|Z)}}_{\text{Augmentation}}$$

- **F**: the conditional CDF of
$$T^* \mid Z^*$$
.

- **G**: the conditional CDF of $Q^* \mid Z^*$.

(both can be nonparametrically identified from the observed data distribution)

-
$$m_{\nu}(v, z; F) = \mathbb{E}_{F}\{\nu(T^{*}) - \theta \mid T^{*} < v, Z^{*} = z\}.$$

• The semiparametric efficiency bound : $\mathbb{E}(\varphi^2)$.

Double robustness:

$$\mathbb{E}\{U(\theta_0; F, G)\} = 0 \text{ if either } F = F_0 \text{ or } G = G_0.$$

Estimation: model double robustness under asymptotic linearity

Let $\{O_i\}_{i=1}^n$ be an observed random sample of size *n*; $O_i = (Q_i, T_i, Z_i)$.

- First estimate F and G
- Then solve $\sum_{i=1}^{n} U_i(\theta; \hat{F}, \hat{G}) = 0$ for $\theta \implies \hat{\theta}_{dr}$

Estimation: model double robustness under asymptotic linearity

Let $\{O_i\}_{i=1}^n$ be an observed random sample of size n; $O_i = (Q_i, T_i, Z_i)$.

• First estimate F and G

• Then solve
$$\sum_{i=1}^{n} U_i(\theta; \hat{F}, \hat{G}) = 0$$
 for $\theta \implies \hat{\theta}_{dr}$

When (semi-)parametric models are used,

• $\hat{\theta}_{dr}$ is CAN if **either** the model for *F* or *G* is correctly specified.

Furthermore, when both models are correctly specified,

- $\hat{\theta}_{dr}$ achieves the semiparametric efficiency bound;
- Consistent estimator for the asymptotic variance.

Estimation: Rate double robustness with cross-fitting

K folds

K-fold cross-fitting

Estimation: Rate double robustness with cross-fitting Suppose

- the nuisance estimators are uniformly consistent;
- the integral product rate $\mathcal{D}(\hat{F}, \hat{G}; F_0, G_0) = o_p(n^{-1/2})$.

$$egin{aligned} \mathcal{D}(F,G;F_0,G_0) &:= \mathbb{E}\left[\left|\int_{ au_1}^{ au_2} \left\{ eta(t,oldsymbol{Z};F) - eta(t,oldsymbol{Z};F_0)
ight\}
ight. \ & ext{ } \cdot \mathbb{I}\left(oldsymbol{Q} \leq t < oldsymbol{T}
ight) \cdot d\left\{rac{1}{G(t|oldsymbol{Z})} - rac{1}{G_0(t|oldsymbol{Z})}
ight. \end{aligned}
ight. \end{aligned}$$

$$a(t, Z; F) = \int_0^t \{ \nu(u) - \theta \} dF(u|Z) / \{ 1 - F(t|Z) \}.$$

K-fold cross-fitting

 $\implies \hat{\theta}_{ab}$

Then

- $\hat{\theta}_{cf}$ is CAN; achieves the semiparametric efficiency bound;
- Consistent estimator for the asymptotic variance.

Nonparametric methods can be used to estimate F and G!

Literature for treatment effect estimation

For handling confounding bias

- Average treatment effect (ATE) \leftarrow Augmented IPTW (AIPTW)
- Conditional average treatment effect (CATE) ← Orthogonal learners (Foster and Syrgkanis, 2023)
 - e.g., R-learner (Nie and Wager, 2021); DR-learner (Kennedy, 2023).

Literature for treatment effect estimation

For handling confounding bias

- Average treatment effect (ATE) \leftarrow Augmented IPTW (AIPTW)
- Conditional average treatment effect (CATE) ← Orthogonal learners (Foster and Syrgkanis, 2023)
 - e.g., R-learner (Nie and Wager, 2021); DR-learner (Kennedy, 2023).

For right censored time-to-event data: confounding + censoring bias

- Doubly robust estimators for ATE (Zhang and Schaubel, 2012; Bai et al., 2017; Sjolander and Vansteelandt, 2017; Westling et al., 2023; Luo et al., 2023)
- Orthogonal learners for CATE (Morzywolek et al., 2023; Xu et al., 2024)

Literature for treatment effect estimation

For handling confounding bias

- Average treatment effect (ATE) \leftarrow Augmented IPTW (AIPTW)
- Conditional average treatment effect (CATE) \leftarrow Orthogonal learners (Foster and Syrgkanis, 2023)
 - e.g., R-learner (Nie and Wager, 2021); DR-learner (Kennedy, 2023).

For right censored time-to-event data: confounding + censoring bias

- Doubly robust estimators for ATE (Zhang and Schaubel, 2012; Bai et al., 2017; Sjolander and Vansteelandt, 2017; Westling et al., 2023; Luo et al., 2023)
- Orthogonal learners for CATE (Morzywolek et al., 2023; Xu et al., 2024)

For handling all three biases

- Methods based on regression models (Cheng and Wang, 2012; Cheng and Wang, 2015).
- IPW-based approaches
- ! Sensitive to model misspecifications; inefficient.

Our contributions

- Develop a general doubly robust framework for handling covariate dependent left truncation and right censoring.
- Construct model doubly robust and rate doubly robust estimators for ATE.
- Construct orthogonal and doubly robust learners for CATE that are shown to achieve oracle rate.
- Our work represents the first attempt to
 - develop doubly robust approaches that address all three sources of biases;
 - investigate CATE estimation for left truncated and right censored data.

Notation

- Q: left truncation time; T: event time; Z: covariates.
- C: censoring time; D = C Q: residual censoring time;
- A: binary treatment assignment.
- Variables with '*' truncation-free data; without '*' truncated data.
- $T^*(a)$ potential event time under treatment a.
- Observe $O = (Q, X, \Delta, A, Z)$ only if $Q^* < T^*$.
- $X = \min(T, C), \Delta = I(T < C).$

Assumptions

- No unmeasured confounding, consistency.
- **②** Conditional independent truncation: $Q^* \perp T^* \mid A^*, Z^*$.
- Solutional noninformative residual censoring: $D \perp (T Q) \mid Q, A, Z$.
- Ositivity.
- Overlap.

Doubly robust operator for left truncation

- $\zeta(T^*, A^*, Z^*; \theta)$ an unbiased and non-degenerate estimating function for θ .
- The EIC for $\boldsymbol{\theta}$ in truncated data: a constant factor times

$$\frac{\zeta(T, A, Z; \theta)}{G(T|A, Z)} - \underbrace{\int_{0}^{\infty} m_{\zeta}(v, A, Z; \theta, F) \cdot \frac{F(v|A, Z)}{1 - F(v|A, Z)} \cdot \frac{d\bar{M}_{Q}(v; G)}{G(v|A, Z)}}_{\text{IPW}}$$
IPW
Augmentation

- **F**: the conditional CDF of $T^* \mid A^*, Z^*$.
- **G**: the conditional CDF of $Q^* \mid A^*, Z^*$.

 $-m_{\zeta}(v,a,z;\theta,F)=\mathbb{E}\{\zeta(T^*,A^*,Z^*;\theta)\mid T^*\leq v, A^*=a, Z^*=z\}.$

• **truncAIPW**: generalize to any function ζ

Doubly robust operator for censoring

- Adapt the AIPCW (Rotnitzky and Robins, 2005) to the residual time scale.
- For any function $\xi(Q, T, A, Z)$ in censoring-free data,

$$\frac{\Delta \xi(Q, X, A, Z)}{S_D(X - Q | Q, A, Z)} + \underbrace{\int_0^\infty \mathbb{E}_{F}\{\xi(Q, T, A, Z) | T - Q \ge u, Q, A, Z\} \cdot \frac{dM_D(u; S_D)}{S_D(u | Q, A, Z)}}_{\text{IPCW}}$$
Augmentation

- Recall D = C Q: the residual censoring time.
- S_D : the conditional survival function of $D \mid Q, A, Z$.
- Recall **F**: the conditional CDF of $T^* \mid A^*, Z^*$.

General framework and double robustness

• General framework:

• **Double robustness**: The expectation is maintained (up to a constant factor) if either *F* or (*G*, *S*_D) is the truth.

19 / 25

ATE estimation

- Estimand: $\theta_a = \mathbb{E}[\nu\{T^*(a)\}].$ Propensity score: $\pi(z) = \mathbb{P}(A^* = 1 | Z^* = z).$
- AIPTW estimating function $\xrightarrow{\text{truncAIPW, AIPCW}} U_a(\theta_a; F, G, \pi, S_D)$
- **Double robustness**: $\mathbb{E}\{U_a(\theta_a; F, G, \pi, S_D)\} = 0$ if either F or (G, π, S_D) is the truth.

ATE estimation

- Estimand: $\theta_a = \mathbb{E}[\nu\{T^*(a)\}]$. Propensity score: $\pi(z) = \mathbb{P}(A^* = 1 | Z^* = z)$.
- AIPTW estimating function $\xrightarrow{\text{truncAIPW, AIPCW}} U_a(\theta_a; F, G, \pi, S_D)$
- **Double robustness**: $\mathbb{E}\{U_a(\theta_a; F, G, \pi, S_D)\} = 0$ if either F or (G, π, S_D) is the truth.
- Estimation: Model double robustness.

Rate double robustness.

• Require the **product error rate** between \hat{F} and $(\hat{G}, \hat{\pi}, \hat{S}_D)$ to be faster than $n^{-1/2}$.

CATE estimation

- Estimand: $\tau(z) = \mathbb{E}[\nu\{T^*(1)\} \nu\{T^*(0)\} \mid Z^* = z].$
- Loss function $\ell(T^*, A^*, Z^*; \tau, F, \pi) \xrightarrow{\text{truncAIPW, AIPCW}} \tilde{\ell}(O; \tau, F, G, \pi, S_D)$
 - $\blacktriangleright \text{ R-loss} \rightarrow \text{ItrcR-loss}$
 - $\blacktriangleright \text{ DR-loss} \rightarrow \text{ItrcDR-loss}$
- Neyman orthogonality and double robustness are maintained.

CATE estimation

- Estimand: $\tau(z) = \mathbb{E}[\nu\{T^*(1)\} \nu\{T^*(0)\} \mid Z^* = z].$
- Loss function $\ell(T^*, A^*, Z^*; \tau, F, \pi) \xrightarrow{\text{truncAIPW, AIPCW}} \tilde{\ell}(O; \tau, F, G, \pi, S_D)$
 - $\blacktriangleright \text{ R-loss} \rightarrow \text{ItrcR-loss}$
 - $\blacktriangleright \text{ DR-loss} \rightarrow \text{ItrcDR-loss}$
- Neyman orthogonality and double robustness are maintained.
- $\hat{\tau} \leftarrow K$ -fold cross-fitted empirical risk minimization.

CATE estimation

- Estimand: $\tau(z) = \mathbb{E}[\nu\{T^*(1)\} \nu\{T^*(0)\} \mid Z^* = z].$
- Loss function $\ell(T^*, A^*, Z^*; \tau, F, \pi) \xrightarrow{\text{truncAIPW, AIPCW}} \tilde{\ell}(O; \tau, F, G, \pi, S_D)$
 - R-loss \rightarrow ltrcR-loss
 - $\blacktriangleright \text{ DR-loss} \rightarrow \text{ItrcDR-loss}$
- Neyman orthogonality and double robustness are maintained.
- $\hat{\tau} \leftarrow K$ -fold cross-fitted empirical risk minimization.
- Estimation errors of the nuisance parameter only have higher order impact on $\hat{\tau} \tau_0$.
 - If the nuisance are estimated at faster than $n^{-1/4}$ rate
 - $\rightarrow \hat{\tau}$ achieve **oracle rate**, i.e., estimation error rate if the nuisance were known.

Simulation - CATE

- 500 simulated data sets. Estimand: $\tau(z) = \mathbb{E}\{\log T^*(1) \log T^*(0) \mid Z^* = z\}$.
- Truncation rate: 31.3%; treatment rate: 50%; censoring rate 48.4%. $RMSE^2 = \frac{1}{n} \sum_{i=1}^{n} {\hat{\tau}(V_i) \tau_0(V_i)}^2$.

Y. Wang, A. Ying, and R. Xu, (2024+). Learning treatment effects under covariate dependent left truncation and right censoring. (Work in progress).

Summary:

- We have developed a general doubly robust framework for handling covariate dependent left truncation and right censoring.
 - e.g., estimate ATE, CATE.
 - Can also be applied to estimate parameters in marginal structure models.

Acknowledgment:

• We thank Dr. Kendrick Li on the helpful discussion on EIC derivation.

References and contact info:

- Wang, Y., Ying, A. and Xu, R. (2024). Doubly robust estimation under covariate-induced dependent left truncation. *Biometrika* 111: 789–808.
- Wang, Y., Ying, A. and Xu, R. (2024+). Learning treatment effects under covariate dependent left truncation and right censoring. (Work in progress).
- R-package: truncAIPW. Email: yuw079@ucsd.edu

I'm on the job market for positions starting 2025 Fall!

Appendix

Assumptions

- f, g, h: the densities of $T^*|Z^*$, $Q^*|Z^*$ and Z^* , respectively.
 - Conditional quasi-independence: The observed data density for (Q, T, Z) satisfies

$$p_{Q,T,Z}(q,t,z) = \left\{ egin{array}{ll} f(t|z)g(q|z)h(z)/eta, & ext{if } t>q, \ 0, & ext{otherwise}, \end{array}
ight.$$

where $\beta = \mathbb{P}(Q^* < T^*) = \int \mathbb{1}(q < t)f(t|z)g(q|z)h(z) dt dq dz$.

- **Positivity**: $G(T^*|Z^*) > 0$ a.s.
- Overlap: There exists $0 < \tau_1 < \tau_2 < \infty$ such that $T^* \ge \tau_1$ a.s., $Q^* \le \tau_2$ a.s.; also $G(\tau_1|Z^*) \ge \delta_1$ a.s. and $F(\tau_2|Z^*) \le 1 \delta_2$ a.s. for some constants $\delta_1 > 0$ and $\delta_2 > 0$.