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Left truncation – selection due to delayed entry

Example: aging studies.

▶ Age is the time scale of interest.
▶ Subjects enrolled at various ages instead of at the time origin (time at birth).
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Figure: A toy example for aging study; ‘×’ - enrollment times; dots - times to events.
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Left truncation – mathematical formulation

Time-to-event: T ∗

Left truncation time: Q∗ – usually the study enrollment time

T ∗ is left truncated by Q∗ if only subjects with T ∗ > Q∗ are included in the data.

Subjects with early event times tend not to be captured → selection bias

Examples:

Aging studies – age is the time scale of interest

Pregnancy studies

Some cancer survivorship studies, e.g., SJLIFE.
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HAAS data – Triple biases

T ∗ - age to moderate cognitive impairment or death
Q∗ - age at entry of HAAS
Only subjects with T ∗ > Q∗ are included.

Triple biases:
• Selection bias from left truncation – early event times are underrepresented.
• Confounding in observational data.
• Informative right censoring.
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First focus on handling left truncation
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Literature for handling left truncation

Under random left truncation / quasi-independence assumption

Likelihood-based approaches.

! Strong assumption – may be violated in practice.

e.g., In HAAS data,

conditional Kendall’s tau test for quasi-independence (Tsai, 1990): p-value = 0.0014.

Under covariate dependent left truncation

In regression settings: Cox model with risk set adjustment.

For marginal survival probability: inverse probability weighting (IPW) (Vakulenko-Lagun et

al., 2022).

! Sensitive to misspecification of the truncation model; inefficient.
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Our contributions

Derive the efficient influence curve (EIC) for the expectation of a transformed event time.

Construct EIC-based estimators that are shown to have favorable properties.
▶ Model double robustness
▶ Rate double robustness
▶ Semiparametric efficiency

Provide technical conditions for the asymptotic properties that appear to not have been
carefully examined in the literature for time-to-event data.

Our work represents the first attempt to construct doubly robust estimators in the
presence of left truncation.

▶ Does NOT fall under the established framework of coarsened data where doubly robust
approaches were developed.

Y. Wang, A. Ying, and R. Xu (2024). Doubly robust estimation under covariate-induced dependent left truncation. Biometrika 111: 789–808.
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Notation and estimand

Q - left truncation time; T - event time; Z - covariates

Variables with ‘∗’ – full data, i.e., if there were no left truncation;

Variables without ‘∗’ – observed data: only contains subjects with Q∗ < T ∗.
O = (Q,T ,Z ).

Estimand: θ := E{ν(T ∗)}, where ν is a given function.

▶ e.g., ν(t) = 1(t > t0) =⇒ θ = P(T ∗ > t0) (survival probability).

▶ e.g., ν(t) = min(t, t0) =⇒ θ = E{min(T ∗, t0)} (restricted mean survival time, RMST).

Y. Wang, A. Ying, and R. Xu (2024). Doubly robust estimation under covariate-induced dependent left truncation. Biometrika 111: 789–808.
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Assumptions

1 Conditional quasi-independence:
Q∗ and T ∗ are conditionally independent given Z∗ on the observed region {t > q}.
- The dependence of Q∗ and T ∗ can be explained by measured covariates.

2 Positivity: P(Q∗ < T ∗ | T ∗,Z ∗) > 0 a.s..

3 Overlap: There exist 0 < τ1 < τ2 <∞ and constants δ1, δ2 > 0 such that T ≥ τ1 a.s.
and Q ≤ τ2 a.s. in the full data; 1− F (τ2|Z ) ≥ δ1 a.s., and G (τ1|Z ) ≥ δ2 a.s..

Y. Wang, A. Ying, and R. Xu (2024). Doubly robust estimation under covariate-induced dependent left truncation. Biometrika 111: 789–808.
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Efficient influence curve and double robustness
Efficient influence curve: φ(O) = a constant factor times

U(θ;F ,G ) =
ν(T )− θ

G (T |Z )︸ ︷︷ ︸
IPW

−
∫ ∞

0
mν(v ,Z ;F ) ·

F (v |Z )
1− F (v |Z )

· dM̄Q(v ;G )

G (v |Z )︸ ︷︷ ︸
Augmentation

- F : the conditional CDF of T ∗ | Z∗.
- G : the conditional CDF of Q∗ | Z∗.
(both can be nonparametrically identified from the observed data distribution)

- mν(v , z ;F ) = EF{ν(T ∗)− θ | T ∗ < v ,Z∗ = z}.

The semiparametric efficiency bound : E(φ2).

Double robustness:

E{U(θ0;F ,G )} = 0 if either F = F0 or G = G0.

Y. Wang, A. Ying, and R. Xu (2024). Doubly robust estimation under covariate-induced dependent left truncation. Biometrika 111: 789–808. 10 / 25
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Estimation: model double robustness under asymptotic linearity

Let {Oi}ni=1 be an observed random sample of size n; Oi = (Qi ,Ti ,Zi ).

First estimate F and G

Then solve
∑n

i=1 Ui (θ; F̂ , Ĝ ) = 0 for θ =⇒ θ̂dr

When (semi-)parametric models are used,

θ̂dr is CAN if either the model for F or G is correctly
specified.

Furthermore, when both models are correctly specified,

θ̂dr achieves the semiparametric efficiency bound;

Consistent estimator for the asymptotic variance.

Y. Wang, A. Ying, and R. Xu (2024). Doubly robust estimation under covariate-induced dependent left truncation. Biometrika 111: 789–808.
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Estimation: Rate double robustness with cross-fitting

Suppose

the nuisance estimators are uniformly consistent;

the integral product rate D(F̂ , Ĝ ;F0,G0) = op(n
−1/2).

D(F ,G ;F0,G0) := E
[∣∣∣∣∫ τ2

τ1

{a(t,Z ;F )− a(t,Z ;F0)}

·1(Q ≤ t < T ) · d
{

1

G(t|Z)
−

1

G0(t|Z)

}∣∣∣∣] ,
a(t,Z ;F ) =

∫ t
0 {ν(u)− θ}dF (u|Z)/{1− F (t|Z)}.

Then

θ̂cf is CAN; achieves the semiparametric efficiency bound;

Consistent estimator for the asymptotic variance.

Nonparametric methods can be used to estimate F and G !

K -fold cross-fitting

=⇒ θ̂cf

Y. Wang, A. Ying, and R. Xu (2024). Doubly robust estimation under covariate-induced dependent left truncation. Biometrika 111: 789–808.
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Literature for treatment effect estimation

For handling confounding bias

Average treatment effect (ATE) ← Augmented IPTW (AIPTW)

Conditional average treatment effect (CATE) ← Orthogonal learners (Foster and Syrgkanis,

2023)

▶ e.g., R-learner (Nie and Wager, 2021); DR-learner (Kennedy, 2023).

For right censored time-to-event data: confounding + censoring bias

Doubly robust estimators for ATE (Zhang and Schaubel, 2012 ; Bai et al., 2017; Sjolander and

Vansteelandt, 2017; Westling et al., 2023; Luo et al., 2023)

Orthogonal learners for CATE (Morzywolek et al., 2023; Xu et al., 2024)

For handling all three biases

Methods based on regression models (Cheng and Wang, 2012; Cheng and Wang, 2015).

IPW-based approaches

! Sensitive to model misspecifications; inefficient.

13 / 25



Literature for treatment effect estimation

For handling confounding bias

Average treatment effect (ATE) ← Augmented IPTW (AIPTW)

Conditional average treatment effect (CATE) ← Orthogonal learners (Foster and Syrgkanis,

2023)

▶ e.g., R-learner (Nie and Wager, 2021); DR-learner (Kennedy, 2023).

For right censored time-to-event data: confounding + censoring bias

Doubly robust estimators for ATE (Zhang and Schaubel, 2012 ; Bai et al., 2017; Sjolander and

Vansteelandt, 2017; Westling et al., 2023; Luo et al., 2023)

Orthogonal learners for CATE (Morzywolek et al., 2023; Xu et al., 2024)

For handling all three biases

Methods based on regression models (Cheng and Wang, 2012; Cheng and Wang, 2015).

IPW-based approaches

! Sensitive to model misspecifications; inefficient.

13 / 25



Literature for treatment effect estimation

For handling confounding bias

Average treatment effect (ATE) ← Augmented IPTW (AIPTW)

Conditional average treatment effect (CATE) ← Orthogonal learners (Foster and Syrgkanis,

2023)

▶ e.g., R-learner (Nie and Wager, 2021); DR-learner (Kennedy, 2023).

For right censored time-to-event data: confounding + censoring bias

Doubly robust estimators for ATE (Zhang and Schaubel, 2012 ; Bai et al., 2017; Sjolander and

Vansteelandt, 2017; Westling et al., 2023; Luo et al., 2023)

Orthogonal learners for CATE (Morzywolek et al., 2023; Xu et al., 2024)

For handling all three biases

Methods based on regression models (Cheng and Wang, 2012; Cheng and Wang, 2015).

IPW-based approaches

! Sensitive to model misspecifications; inefficient.
13 / 25



Our contributions

Develop a general doubly robust framework for handling covariate dependent left
truncation and right censoring.

Construct model doubly robust and rate doubly robust estimators for ATE.
Construct orthogonal and doubly robust learners for CATE that are shown to achieve
oracle rate.

Our work represents the first attempt to
▶ develop doubly robust approaches that address all three sources of biases;
▶ investigate CATE estimation for left truncated and right censored data.

Y. Wang, A. Ying, and R. Xu, (2024+). Learning treatment effects under covariate dependent left truncation and right censoring. (Work in progress).
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Notation

Q: left truncation time; T : event time; Z : covariates.
C : censoring time; D = C − Q: residual censoring time;
A: binary treatment assignment.

Variables with ‘∗’ – truncation-free data; without ‘∗’ – truncated data.
T ∗(a) – potential event time under treatment a.

Observe O = (Q,X ,∆,A,Z ) only if Q∗ < T ∗.
X = min(T ,C ), ∆ = I (T < C ).

Y. Wang, A. Ying, and R. Xu, (2024+). Learning treatment effects under covariate dependent left truncation and right censoring. (Work in progress).
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Assumptions

1 No unmeasured confounding, consistency.

2 Conditional independent truncation: Q∗ ⊥⊥ T ∗ | A∗,Z ∗.

3 Conditional noninformative residual censoring: D ⊥⊥ (T − Q) | Q,A,Z .

4 Positivity.

5 Overlap.

Y. Wang, A. Ying, and R. Xu, (2024+). Learning treatment effects under covariate dependent left truncation and right censoring. (Work in progress). 16 / 25



Doubly robust operator for left truncation

ζ(T ∗,A∗,Z ∗; θ) – an unbiased and non-degenerate estimating function for θ.

The EIC for θ in truncated data: a constant factor times

ζ(T ,A,Z ; θ)

G (T |A,Z )︸ ︷︷ ︸
IPW

−
∫ ∞

0
mζ(v ,A,Z ; θ,F ) ·

F (v |A,Z )
1− F (v |A,Z )

· dM̄Q(v ;G )

G (v |A,Z )︸ ︷︷ ︸
Augmentation

- F : the conditional CDF of T ∗ | A∗,Z∗.
- G : the conditional CDF of Q∗ | A∗,Z∗.

- mζ(v , a, z ; θ,F ) = E{ζ(T ∗,A∗,Z∗; θ) | T ∗ ≤ v ,A∗ = a,Z∗ = z}.

truncAIPW: generalize to any function ζ

Y. Wang, A. Ying, and R. Xu, (2024+). Learning treatment effects under covariate dependent left truncation and right censoring. (Work in progress).
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Doubly robust operator for censoring

Adapt the AIPCW (Rotnitzky and Robins, 2005) to the residual time scale.

For any function ξ(Q,T ,A,Z ) in censoring-free data,

∆ ξ(Q,X ,A,Z )

SD(X − Q|Q,A,Z )︸ ︷︷ ︸
IPCW

+

∫ ∞

0

EF{ξ(Q,T ,A,Z )|T − Q ≥ u,Q,A,Z} · dMD(u;SD)

SD(u|Q,A,Z )︸ ︷︷ ︸
Augmentation

- Recall D = C − Q: the residual censoring time.

- SD : the conditional survival function of D | Q,A,Z .
- Recall F : the conditional CDF of T ∗ | A∗,Z∗.

Y. Wang, A. Ying, and R. Xu, (2024+). Learning treatment effects under covariate dependent left truncation and right censoring. (Work in progress).
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General framework and double robustness
General framework:

Trunc-free & cen-free data

truncAIPW(F,G)

Full data

AIPTW(µ,π), orthogonal loss

Truncated & cen-free data

Observed data

AIPCW(F ,SD)

Double robustness: The expectation is maintained (up to a constant factor) if either F
or (G ,SD) is the truth.

Y. Wang, A. Ying, and R. Xu, (2024+). Learning treatment effects under covariate dependent left truncation and right censoring. (Work in progress).
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ATE estimation

Estimand: θa = E[ν{T ∗(a)}]. Propensity score: π(z) = P(A∗ = 1|Z∗ = z).

AIPTW estimating function
truncAIPW, AIPCW−−−−−−−−−−−−→ Ua(θa;F ,G , π,SD)

Double robustness: E{Ua(θa;F ,G , π,SD)} = 0 if either F or (G , π,SD) is the truth.

Estimation:
Model double robustness. Rate double robustness.

Require the product error rate between
F̂ and (Ĝ , π̂, ŜD) to be faster than n−1/2.

Y. Wang, A. Ying, and R. Xu, (2024+). Learning treatment effects under covariate dependent left truncation and right censoring. (Work in progress).
20 / 25



ATE estimation

Estimand: θa = E[ν{T ∗(a)}]. Propensity score: π(z) = P(A∗ = 1|Z∗ = z).

AIPTW estimating function
truncAIPW, AIPCW−−−−−−−−−−−−→ Ua(θa;F ,G , π,SD)

Double robustness: E{Ua(θa;F ,G , π,SD)} = 0 if either F or (G , π,SD) is the truth.

Estimation:
Model double robustness. Rate double robustness.

Require the product error rate between
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CATE estimation

Estimand: τ(z) = E[ν{T ∗(1)} − ν{T ∗(0)} | Z ∗ = z ].

Loss function ℓ(T ∗,A∗,Z ∗; τ,F , π)
truncAIPW, AIPCW−−−−−−−−−−−−→ ℓ̃(O; τ,F ,G , π,SD)

▶ R-loss → ltrcR-loss
▶ DR-loss → ltrcDR-loss

Neyman orthogonality and double robustness are maintained.

τ̂ ← K -fold cross-fitted empirical risk minimization.

Estimation errors of the nuisance parameter only have higher order impact on τ̂ − τ0.

▶ If the nuisance are estimated at faster than n−1/4 rate
→ τ̂ achieve oracle rate, i.e., estimation error rate if the nuisance were known.

Y. Wang, A. Ying, and R. Xu, (2024+). Learning treatment effects under covariate dependent left truncation and right censoring. (Work in progress). 21 / 25
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Simulation - CATE
500 simulated data sets. Estimand: τ(z) = E{logT ∗(1)− logT ∗(0) | Z∗ = z}.
Truncation rate: 31.3%; treatment rate: 50%; censoring rate 48.4%. RMSE2 = 1

n

∑n
i=1{τ̂(Vi )− τ0(Vi )}2.
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Y. Wang, A. Ying, and R. Xu, (2024+). Learning treatment effects under covariate dependent left truncation and right censoring. (Work in progress).
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Summary:

We have developed a general doubly robust framework for handling covariate dependent
left truncation and right censoring.

▶ e.g., estimate ATE, CATE.
▶ Can also be applied to estimate parameters in marginal structure models.
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Appendix

24 / 25



Assumptions

f , g , h: the densities of T ∗|Z∗, Q∗|Z∗ and Z∗, respectively.

Conditional quasi-independence: The observed data density for (Q,T ,Z ) satisfies

pQ,T ,Z (q, t, z) =

{
f (t|z)g(q|z)h(z)/β, if t > q,
0, otherwise,

where β = P(Q∗ < T ∗) =
∫
1(q < t)f (t|z)g(q|z)h(z) dt dq dz .

Positivity: G (T ∗|Z∗) > 0 a.s.

Overlap: There exists 0 < τ1 < τ2 <∞ such that T ∗ ≥ τ1 a.s., Q∗ ≤ τ2 a.s.; also G (τ1|Z∗) ≥ δ1
a.s. and F (τ2|Z∗) ≤ 1− δ2 a.s. for some constants δ1 > 0 and δ2 > 0.
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