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Introduction: Selection Bias from Left Truncation

•Outcome of interest: time-to-event (𝑇 ∗)
• 𝑇 ∗ is left truncated by the enrollment time (𝑄∗) if only subjects with

𝑇 ∗ > 𝑄∗ are included in the data. ⇒ Selection bias.
- Usually present in studies with delayed entry.
e.g., aging studies, pregnancy studies, cancer survivorship studies.
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Figure: A toy example of aging study: people’s lifespans on the time scale of study
(left) and on the age scale (right). Solid dots: event times; ‘×’: enrollment times.

• Triple biases: confounding, selection bias from left truncation,
informative right censoring.

• Estimand (CATE): 𝜏(𝑣) = 𝔼[𝜈{𝑇 ∗(1)} − 𝜈{𝑇 ∗(0)} ∣ 𝑉 ∗ = 𝑣].
•Notation: with ‘∗’ – truncation-free data; without ‘∗’ – truncated data.
• 𝐶 : censoring time; 𝐷 = 𝐶 − 𝑄: residual censoring time.
•Assumptions: 𝑄∗ ⟂⟂ 𝑇 ∗ ∣ 𝐴∗, 𝑍∗; 𝐷 ⟂⟂ 𝑇 ∣ 𝑄, 𝐴, 𝑍.

Method

For any 𝜁 = 𝜁(𝑇 ∗, 𝐴∗, 𝑍∗) and 𝜑 = 𝜑(𝑄, 𝑇 , 𝐴, 𝑍),
• 𝒱𝑄(𝜁 ; 𝐹 , 𝐺) =

𝜁(𝑇 , 𝐴, 𝑍)
𝐺(𝑇 |𝐴, 𝑍)⏟⏟⏟⏟⏟⏟⏟

IPW

− ∫
∞

0
𝑚𝜁(𝑣, 𝐴, 𝑍; 𝐹 ) ⋅ 𝐹 (𝑣|𝐴, 𝑍)

1 − 𝐹 (𝑣|𝐴, 𝑍) ⋅
𝑑𝑀̄𝑄(𝑣; 𝐺)
𝐺(𝑣|𝐴, 𝑍)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Augmentation

• 𝒱𝐶(𝜑; 𝐹 , 𝑆𝐷) =
Δ 𝜑(𝑄, 𝑋, 𝐴, 𝑍)

𝑆𝐷(𝑋 − 𝑄|𝑄, 𝐴, 𝑍)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

IPCW

+ ∫
∞

0
𝑚̄𝜑(𝑢, 𝑄, 𝐴, 𝑍; 𝐹 ) ⋅ 𝑑𝑀𝐷(𝑢; 𝑆𝐷)

𝑆𝐷(𝑢|𝑄, 𝐴, 𝑍)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Augmentation

- 𝐹 : conditional CDF of 𝑇 ∗ ∣ 𝐴∗, 𝑍∗; 𝐺: conditional CDF of 𝑄∗ ∣ 𝐴∗, 𝑍∗.
- 𝑆𝐷: conditional survival function of 𝐷 ∣ 𝑄, 𝐴, 𝑍.
- 𝑚𝜁(𝑣, 𝑎, 𝑧; 𝜃, 𝐹 ) = 𝔼{𝜁(𝑇 ∗, 𝐴∗, 𝑍∗; 𝜃) ∣ 𝑇 ∗ ≤ 𝑣, 𝐴∗ = 𝑎, 𝑍∗ = 𝑧}.
- 𝑚̄𝜑(𝑢, 𝑞, 𝑎, 𝑧; 𝐹 ) = 𝔼{𝜑(𝑄, 𝑇 , 𝐴, 𝑍)|𝑇 − 𝑄 ≥ 𝑢, 𝑄 = 𝑞, 𝐴 = 𝑎, 𝑍 = 𝑧} =
∫∞

𝑞+𝑢 𝜑(𝑞, 𝑡, 𝑎, 𝑧)𝑑𝐹 (𝑡|𝑎, 𝑧)/{1 − 𝐹 (𝑞 + 𝑢|𝑎, 𝑧)}.

• AIPW operator for handling left truncation and right censoring (LTRC):
𝒱 (𝐹 , 𝐺, 𝑆𝐷) = 𝒱𝐶(𝐹 , 𝑆𝐷) ∘ 𝒱𝑄(𝐹 , 𝐺).

Double Robustness and Neyman Orthogonality

• Double robustness (DR): 𝔼{𝒱 (𝜁; 𝐹 , 𝐺, 𝑆𝐷)} = 𝛽−1 𝔼(𝜁)
if either 𝐹 = 𝐹0 or (𝐺, 𝑆𝐷) = (𝐺0, 𝑆𝐷0), where 𝛽 = ℙ(𝑄∗ < 𝑇 ∗).

• Neyman orthogonality: 𝒱 preserves Neyman orthogonality.

Orthogonal and Doubly Robust Learners

•R-loss
𝒱⟶ ltrcR-loss (Neyman orthogonal); DR-loss

𝒱⟶ ltrcDR-loss (doubly robust).
• Two-stage algorithm with cross fitting: 1) Estimate nuisance parameters;
2) Empirical risk minimization with the estimated nuisance parameters plugged in.

HHP-HAAS data

•Question: What is the impact of midlife alcohol consumption on late-life cognitive impairment?
• 𝑇 ∗ - age to moderate cognitive impairment or death; 𝑄∗ - age at entry of HAAS.
•Baseline covariates: Education, ApoE genotype, systolic blood pressure (SBP), heart rate (HR).

Figure: Estimated CATE surfaces from ltrcR-learner for cognitive-impairment-free survival at age 90 across the four
education and ApoE genotype subgroups (views from four different angles); the estimated CATE surface for the
two education groups overlaps for SBP < 158 mmHg. The spike of the CATE surfaces appear at SBP being 158 -
171 mmHg.

Simulation Results

• Truncation rate: around 28%; censoring rate: around 50%; treatment rate: 50%.
• MSE = 1

𝑛 ∑𝑛
𝑖=1{ ̂𝜏(𝑉𝑖) − 𝜏0(𝑉𝑖)}2
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Figure: MSE’s for different learners cross 500 simulated datasets under different
scenarios; ‘-o’ indicates the oracle learner with the true nuisance parameters.

Oracle Rate Results

• Error bound: With probability at least 1 − 𝛿,
‖ ̂𝜏 − 𝜏0‖2

2 ≤ 𝑐2(𝑛) ⋅ 𝑟2(𝒯 , 𝛿/2; ̂𝜋, ̂𝐹 , 𝐺̂, ̂𝑆𝐷) + 𝑐1(𝑛) ⋅ 𝑟1(𝒢 , 𝛿/2),
where 𝑟1: the error bound for the (integral) product estimation
errors between 𝐹 and (𝜋, 𝐺, 𝑆𝐷);
𝑟2: the excess risk bound of the second stage learning algorithm.

• An oracle result: ‖ ̂𝜏 − 𝜏0‖2 = 𝑂𝑝(𝛿∗
𝑛 + 𝑛−1/2 + 𝑎𝑛),

where 𝛿∗
𝑛 : the critical radius of the second stage function class;

𝑎𝑛: the rate of the (integral) product estimation errors between 𝐹
and (𝜋, 𝐺, 𝑆𝐷).
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