

Learning treatment effects under covariate dependent left truncation and right censoring

Yuyao Wang¹, Andrew Ying and Ronghui Xu¹²

¹Department of Mathematics, ²Herbert Wertheim School of Public Health and Halicioglu Data Science Institute, UC San Diego

Introduction: Selection Bias from Left Truncation

- Outcome of interest: time-to-event (T*)
- T^* is **left truncated** by the enrollment time (Q^*) if only subjects with $T^* > Q^*$ are included in the data. \Rightarrow **Selection bias**.
- Usually present in studies with *delayed entry*.
- e.g., aging studies, pregnancy studies, cancer survivorship studies.

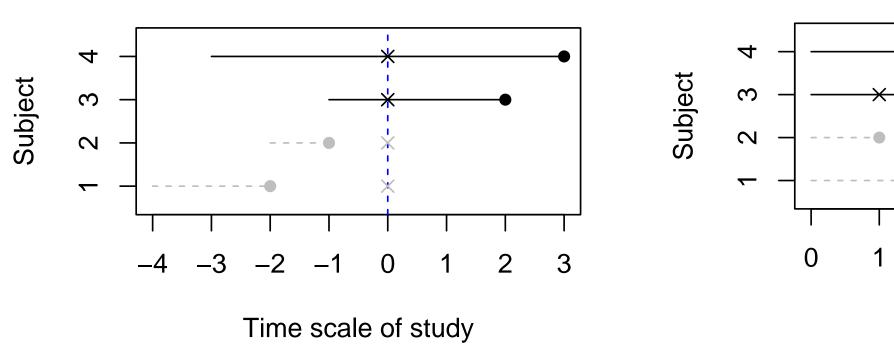


Figure: A toy example of aging study: people's lifespans on the time scale of study (left) and on the age scale (right). Solid dots: event times; 'x': enrollment times.

- Triple biases: confounding, selection bias from left truncation, informative right censoring.
- Estimand (CATE): $\tau(v) = \mathbb{E}[\nu\{T^*(1)\} \nu\{T^*(0)\} \mid V^* = v].$
- Notation: with '*' truncation-free data; without '*' truncated data.
- C: censoring time; D = C Q: residual censoring time.
- Assumptions: $Q^* \perp \!\!\! \perp T^* \mid A^*, Z^*$; $D \perp \!\!\! \perp T \mid Q, A, Z$.

Method

For any $\zeta = \zeta(T^*, A^*, Z^*)$ and $\varphi = \varphi(Q, T, A, Z)$,

 $\bullet \, \mathcal{V}_Q(\zeta; F, G) =$

$$\frac{\zeta(T,A,Z)}{G(T|A,Z)} - \int_0^\infty m_{\zeta}(v,A,Z;F) \cdot \frac{F(v|A,Z)}{1 - F(v|A,Z)} \cdot \frac{d\bar{M}_Q(v;G)}{G(v|A,Z)}$$

Augmentation

_ _ .

IPW

$$\begin{array}{c} \bullet \; \mathcal{V}_{C}(\varphi; F, S_{D}) = \\ \\ \underline{\frac{\Delta \; \varphi(Q, X, A, Z)}{S_{D}(X - Q|Q, A, Z)}} \; \; + \; \; \underbrace{\int_{0}^{\infty} \bar{m}_{\varphi}(u, Q, A, Z; F) \cdot \frac{d \, M_{D}(u; S_{D})}{S_{D}(u|Q, A, Z)}}_{\text{PCW}} \\ \end{array}$$

- F: conditional CDF of $T^* \mid A^*, Z^*$; G: conditional CDF of $Q^* \mid A^*, Z^*$.
- S_D : conditional survival function of $D \mid Q, A, Z$.
- $-m_{\zeta}(v, a, z; \theta, F) = \mathbb{E}\{\zeta(T^*, A^*, Z^*; \theta) \mid T^* \leq v, A^* = a, Z^* = z\}.$ $-\bar{m}_{\varphi}(u, q, a, z; F) = \mathbb{E}\{\varphi(Q, T, A, Z) | T Q \geq u, Q = q, A = a, Z = z\} = \int_{a+u}^{\infty} \varphi(q, t, a, z) dF(t|a, z) / \{1 F(q + u|a, z)\}.$
- AIPW operator for handling left truncation and right censoring (LTRC): $\mathscr{V}(F,G,S_D) = \mathscr{V}_C(F,S_D) \circ \mathscr{V}_O(F,G).$

Double Robustness and Neyman Orthogonality

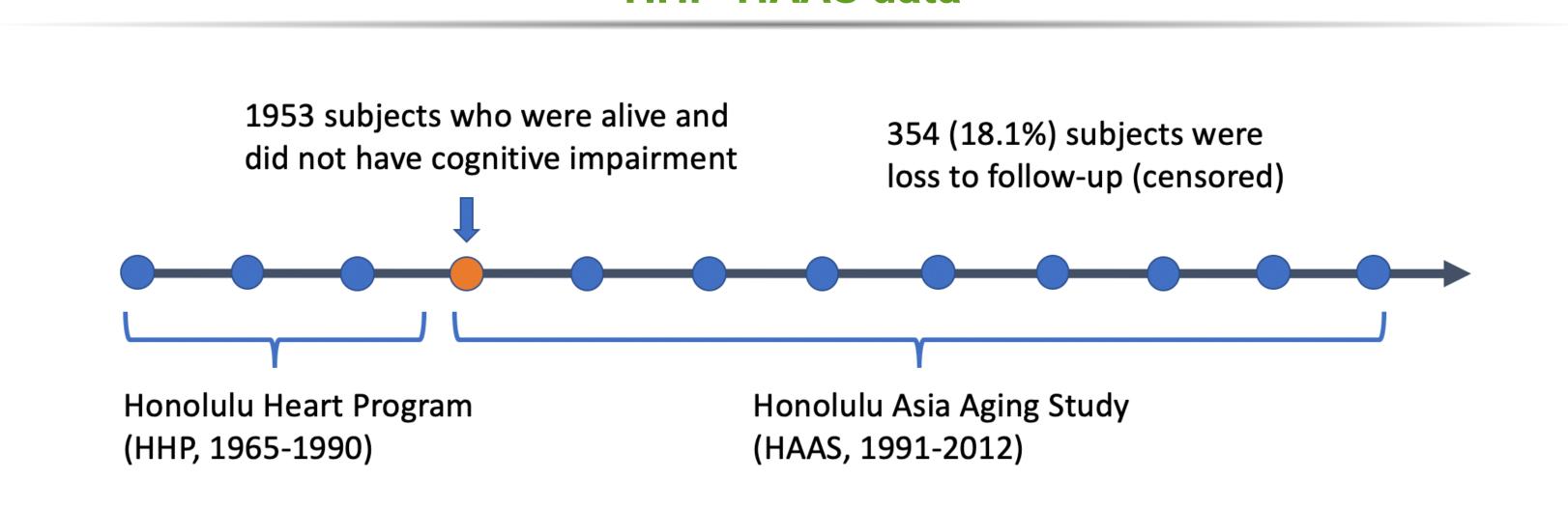
$\mathbf{D}_{\mathbf{a}} = \mathbf{b}_{\mathbf{a}} = \mathbf{b}_{\mathbf{a}} = \mathbf{c}_{\mathbf{a}} \cdot \mathbf{c}_{\mathbf{a}} \cdot$

- Double robustness (DR): $\mathbb{E}\{\mathcal{V}(\zeta; F, G, S_D)\} = \beta^{-1} \mathbb{E}(\zeta)$ if either $F = F_0$ or $(G, S_D) = (G_0, S_{D0})$, where $\beta = \mathbb{P}(Q^* < T^*)$.
- Neyman orthogonality: V preserves Neyman orthogonality.

Orthogonal and Doubly Robust Learners

- R-loss $\stackrel{\mathscr{V}}{\longrightarrow}$ ItrcR-loss (Neyman orthogonal); DR-loss $\stackrel{\mathscr{V}}{\longrightarrow}$ ItrcDR-loss (doubly robust).
- Two-stage algorithm with cross fitting: 1) Estimate nuisance parameters;
 2) Empirical risk minimization with the estimated nuisance parameters plugged in.

HHP-HAAS data



- Question: What is the impact of midlife alcohol consumption on late-life cognitive impairment?
- T^* age to moderate cognitive impairment or death; Q^* age at entry of HAAS.
- Baseline covariates: Education, ApoE genotype, systolic blood pressure (SBP), heart rate (HR).

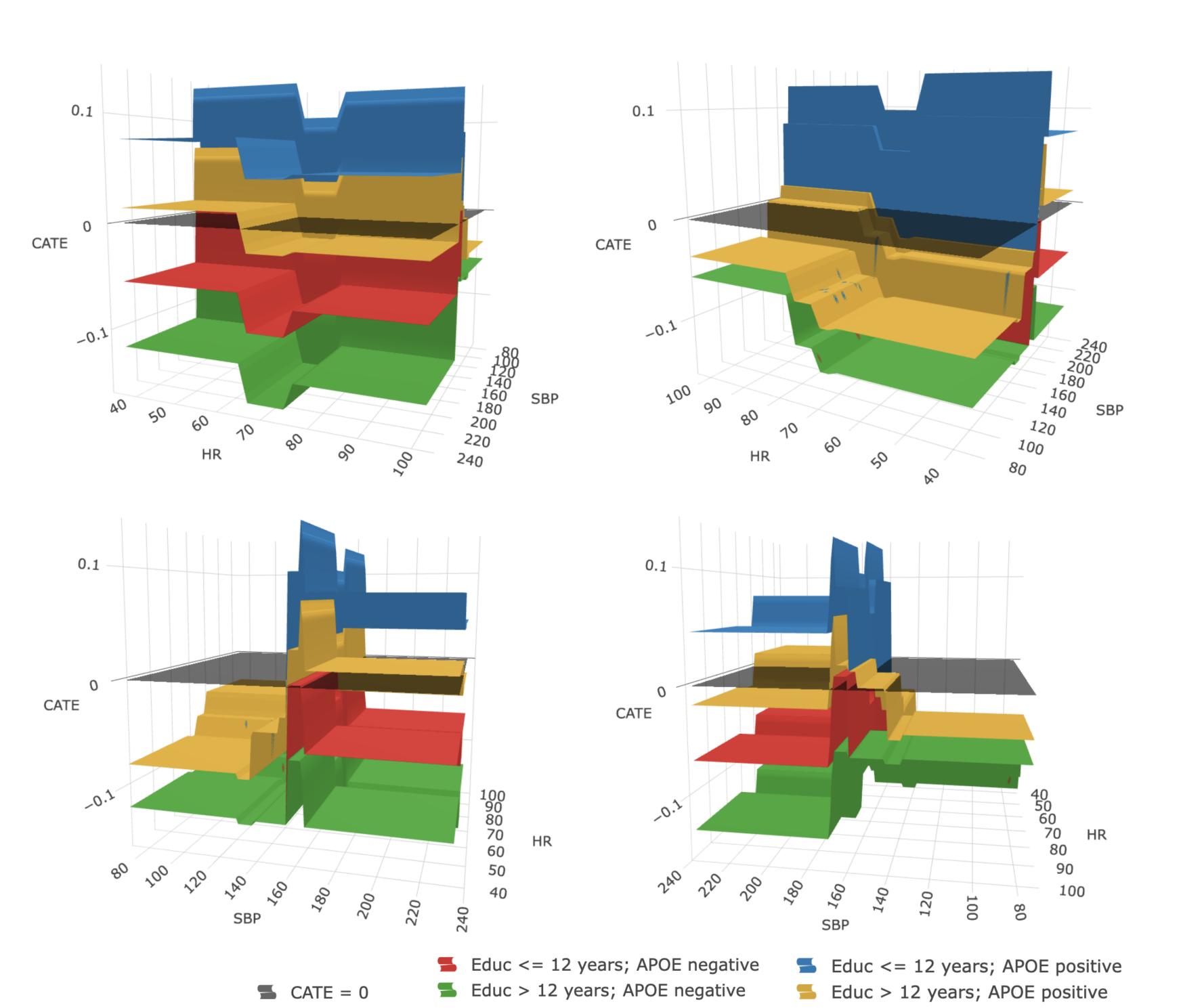


Figure: Estimated CATE surfaces from ltrcR-learner for cognitive-impairment-free survival at age 90 across the four education and ApoE genotype subgroups (views from four different angles); the estimated CATE surface for the two education groups overlaps for SBP < 158 mmHg. The spike of the CATE surfaces appear at SBP being 158 - 171 mmHg.

Simulation Results

- Truncation rate: around 28%; censoring rate: around 50%; treatment rate: 50%.
- MSE = $\frac{1}{n} \sum_{i=1}^{n} {\{\hat{\tau}(V_i) \tau_0(V_i)\}^2}$

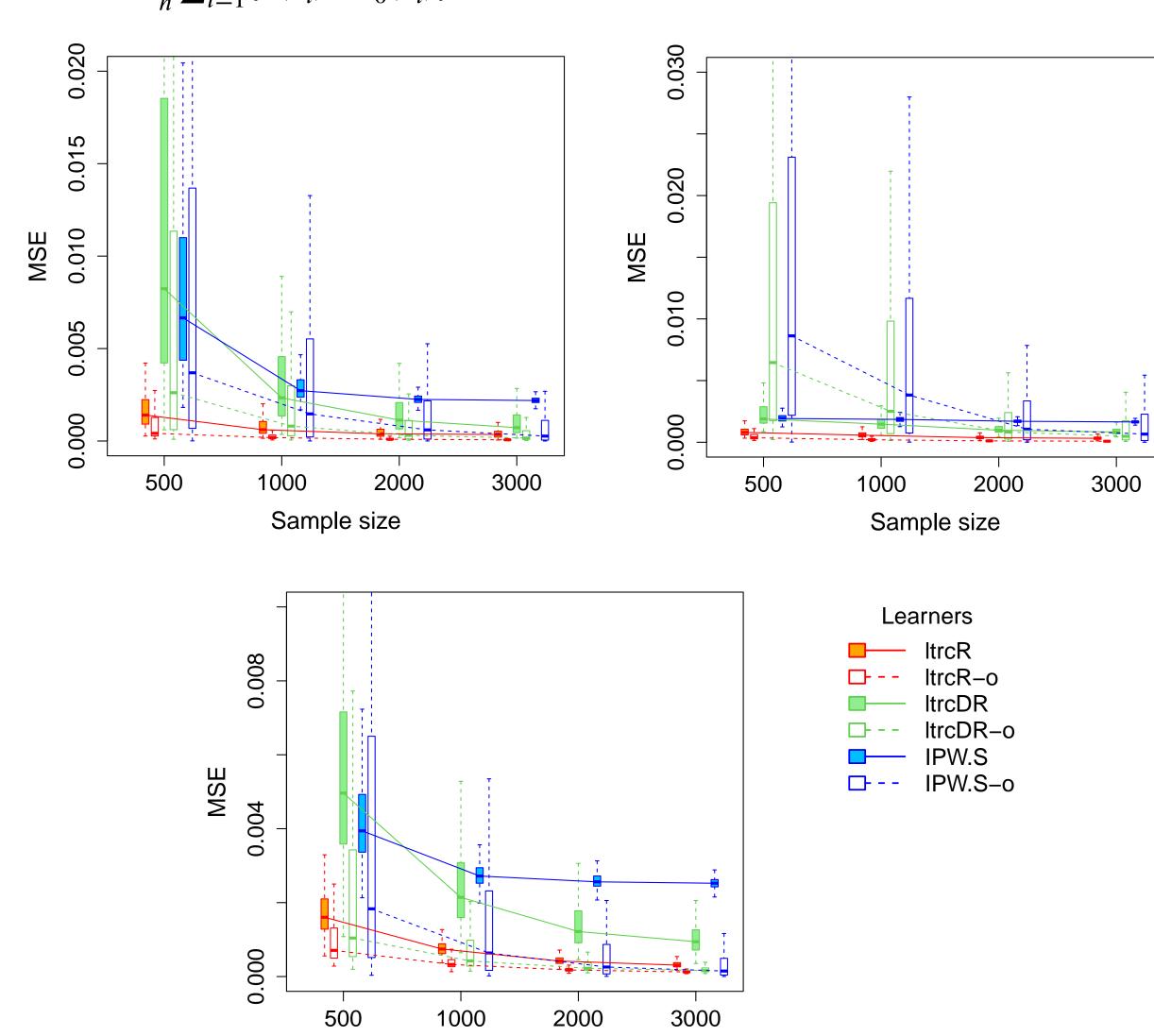


Figure: MSE's for different learners cross 500 simulated datasets under different scenarios; '-o' indicates the oracle learner with the true nuisance parameters.

Oracle Rate Results

- Error bound: With probability at least 1δ ,
 - $\|\hat{\tau} \tau_0\|_2^2 \le c_2(n) \cdot r_2(\mathcal{T}, \delta/2; \hat{\pi}, \hat{F}, \hat{G}, \hat{S}_D) + c_1(n) \cdot r_1(\mathcal{G}, \delta/2),$
- where r_1 : the error bound for the (integral) product estimation errors between F and (π, G, S_D) ;
- r_2 : the excess risk bound of the second stage learning algorithm.
- An oracle result: $\|\hat{\tau} \tau_0\|_2 = O_p(\delta_n^* + n^{-1/2} + a_n)$, where δ_n^* : the critical radius of the second stage function class; a_n : the rate of the (integral) product estimation errors between F and (π, G, S_D) .

References and Contact Information

- Yuyao Wang, Andrew Ying, Ronghui Xu. (2024) Doubly robust estimation under covariate-induced dependent left truncation. Biometrika, 111(3), 789-808.
- Yuyao Wang, Andrew Ying, Ronghui Xu. (2024) Learning treatment effects under covariate dependent left truncation and right censoring. arXiv:2411.18879.
- GitHub Repo: https://github.com/wangyuyao98/truncAC.
- R package: truncAIPW.
- Contact info: yuw079@ucsd.edu (Yuyao Wang). aying9339@gmail.com (Andrew Ying) rxu@ucsd.edu (Ronghui Xu)