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Introduction

e Outcome of interest: time to event (1)

o T™ is left truncated by the enrollment time (Q*) if only subjects with
T* > () are included in the data. = Selection bias.
- Usually present in studies with delayed entry.
- E.g.. prevelant cohort studes with follow-up, aging studies, pregnancy
studies.

e A toy example of aging study:
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Figure: People's lifespans on the time scale of study (left) and on the age scale (right).
Solid dots: event times: ‘xX': enrollment times.

e HAAS data:

2560 subjects who were alive and
did not have cognitive impairment
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Honolulu Heart Program
(HHP, 1965-1990)

463 (18.1%) subjects were
loss to follow-up (censored)

Honolulu Asia Aging Study
(HAAS, 1991-2012)

Outcome of interest: Cognitive impairment-iree survival on the age scale.

I™ - age to moderate cognitive impairment or death.
Q)" - age at entry of HAAS.

e Triple biases:

« Confounding in observational data.

e Selection bias from left truncation
- BEarly event times are underrepresented.

 Informative right censoring.

EIC for E{v(7T*)} under left truncation

o The efficient influence curve (EIC) for 8 = E{v(T*)}: 5-U(0; F,G),
v(T) — 6 F(v|A, Z)

dMQ(U; G)

F.Q) = C (v, A, Z:0, F) .
U0:F,G) = G 7 /O mo(v, A, Z:6, F)

where 6 = P(Q* < T7%), G(tla,z) = P(Q* < t|A* =a, 2" = 2),
F(tla,z) =P(T* < t|A* =a,Z* = z), and
my(v,a,z;,0, F) =E{v(T*) -0 | T* <v,A*=a,7" = z}.

* Double robustness: E{U(0y; F,G)} = 0 if either F' = Fj or G = G,
where Fj, GGy denote the truth.

e Constructed model doubly robust estimators under asymptotic linearity
and rate doubly robust estimators under cross-fitting.

e Provided technical conditions for the asymptotic properties that appear to

not have been caretully examined in the literature for time-to-event data.

e Represents the first attempt to construct doubly robust estimators in
the presence of left truncation (selection bias)
— Does NOT fall under the established framework of coarsened data
where doubly robust approaches are developed.

AIPTW and AIPCW operators
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truncAIPW operator

e For any function (T, Z*; 0) of the truncation free data, consider the following truncation
AIPW operator:

(T, A, Z;0
G(T|A, Z)
where m¢(v,a, z) = E{((T*, 2% 0) | T* <v,A* =a,Z" = z}.

e Double robustness: if either F' = Fj, or G = (G, then

E{Vo((;F,G)(Q,T, A, Z)} =~ -E{(T", A%, Z*,0)}
where § = P(Q* < T7).

) /OO F(v|A, Z)  dMg(v;G)
A, Z:0,F). .
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Framework for handling triple biases

e Estimand 6 — defined by the distribution of (7%(1),7%(0), Z*); (&) o
e.g. ATE: E [{T*(1)} — v{T*(0)}]. i %
o A e {1,0}—treatment. T* = A*T*(1) + (1 — A*)T*(0). AR
o D — residual censoring. X = min(T,Q + D), G
A= [(T < Q + D) (Eliminate truacation)
/I8
Full data ¢{T™(1),17(0), Z*; 0} (b)
| ATPTW F Sp
Trunc-free & cen-free data Va(C; p, m)(T*, A*, 2% 0) (Elimifiat tion)
J trunCAIPW 1 nate truncation
Truncated & cen-free data Vg © Va(G F,m, G)(Q,T, A, Z;0) n G
| AIPCW

Observed data ~ Voo Vg o Va((; F,m, G, Sp)(Q, X, A A, Z;0)

Simulation results

* 500 simulated data sets each with sample size 1000; estimand: 8 = P*{T™(1) > 3} = 0.5529.
e Truncation rate: 22.8%; treatment rate: 50%; censoring rate 47.6%.
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Orthogonal learning for HTE

e Conditional average treatment effect (CATE): my(2) = E [v{T™*(1)} — v{T*(0)}| 2" = 2]
e Loss function for truncation-free and censoring-free data: ¢(1T™, A*, Z*; 1, m, 7);
e.g., R-loss (Nie and Wager 2021), DR-loss (Kennedy 2023), etc.

* Apply Ve o Vg to £
L(t;m,m, F,G,Sp) = Voo Voll; F,m,G,Sp)(Q, X, A, A, 7).
We have
T =argminE{L(7; F,7,G,Sp)}.

e [, is a Neyman orthogonal loss
= Achieve oracle rate if the nuisance parameters are estimated at faster than n~* rate.

Additional Information

e Wang, Y., Ying, A., & Xu, R. (2024). Doubly robust estimation under covariate-induced
dependent left truncation. Accepted in Biometrika. arXiv:2208.06836.

e Code: https://github.com /wangyuyao98/left_trunc_ DR.
e Email: yuw079Qucsd.edu (Yuyao Wang).
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