Doubly robust estimation of treatment effects under covariate dependent left truncation and right censoring

Yuyao Wang¹, Andrew Ying and Ronghui Xu¹²

¹Department of Mathematics, ²Herbert Wertheim School of Public Health and Halicioglu Data Science Institute, UC San Diego

Introduction

- Outcome of interest: time to event (T^*)
- T^* is **left truncated** by the enrollment time (Q^*) if only subjects with $T^* > Q^*$ are included in the data. \Rightarrow **Selection bias**.
- Usually present in studies with delayed entry.
- E.g., prevelant cohort studes with follow-up, aging studies, pregnancy studies.
- A toy example of aging study:

Figure: People's lifespans on the time scale of study (left) and on the age scale (right). Solid dots: event times; ' \times ': enrollment times.

• HAAS data:

Outcome of interest: Cognitive impairment-free survival on the age scale. T^* - age to moderate cognitive impairment or death.

 Q^* - age at entry of HAAS.

• Triple biases:

- Confounding in observational data.
- Selection bias from left truncation
- Early event times are underrepresented.
- Informative right censoring.

$Z \longrightarrow Q$ $\downarrow \qquad \qquad \downarrow$ $A \longrightarrow T \longrightarrow A$

EIC for $\mathbb{E}\{\nu(T^*)\}$ under left truncation

• The efficient influence curve (EIC) for $\theta = \mathbb{E}\{\nu(T^*)\}: \beta \cdot U(\theta; F, G)$,

$$U(\theta; F, G) = \frac{\nu(T) - \theta}{G(T|A, Z)} - \int_0^\infty m_{\nu}(v, A, Z; \theta, F) \cdot \frac{F(v|A, Z)}{1 - F(v|A, Z)} \cdot \frac{dM_Q(v; G)}{G(v|A, Z)},$$
where $\beta = \mathbb{P}(Q^* < T^*)$, $G(t|a, z) = \mathbb{P}(Q^* \le t|A^* = a, Z^* = z)$,
$$F(t|a, z) = \mathbb{P}(T^* \le t|A^* = a, Z^* = z), \text{ and }$$

$$m_{\nu}(v, a, z; \theta, F) = \mathbb{E}\{\nu(T^*) - \theta \mid T^* < v, A^* = a, Z^* = z\}.$$

- **Double robustness**: $\mathbb{E}\{U(\theta_0; F, G)\} = 0$ if either $F = F_0$ or $G = G_0$, where F_0 , G_0 denote the truth.
- Constructed *model doubly robust* estimators under asymptotic linearity and *rate doubly robust* estimators under cross-fitting.
- Provided technical conditions for the asymptotic properties that appear to not have been carefully examined in the literature for time-to-event data.
- Represents the **first attempt** to construct doubly robust estimators in the presence of left truncation (selection bias)
- \rightarrow Does NOT fall under the established framework of coarsened data where doubly robust approaches are developed.

AIPTW and **AIPCW** operators

For any
$$\zeta_1(T^*(a), A^*, Z^*)$$
 and any $\zeta_2(Q, T, A, Z)$,
$$\mathcal{V}_a(\zeta_1; \pi, \mu_a) = \frac{(A^*)^a (1 - A^*)^{1-a}}{\pi (Z^*)^a \{1 - \pi(Z^*)\}^{1-a}} \zeta_1(T^*, A^*, Z^*)$$

$$+ \frac{(-1)^a \{A^* - \pi(Z^*)\}}{\tilde{\pi}(a, Z^*)} \mathbb{E}\{\zeta_1(T^*, A^*, Z^*) | A^* = a, Z^*\}$$

$$\mathcal{V}_{C}(\zeta_{2}; F, S_{D})(Q, X, \Delta, A, Z) = \frac{\Delta \zeta(Q, X, A, Z)}{S_{D}(X - Q|Q, A, Z)} + \int_{0}^{\infty} \mathbb{E}\{\zeta_{@}(Q, T, A, Z)|T - Q \geq u, Q, A, Z\} \frac{dM_{D}(u; S_{D})}{S_{D}(u|Q, A, Z)}.$$

truncAIPW operator

• For any function $\zeta(T^*, Z^*; \theta)$ of the truncation free data, consider the following truncation AIPW operator:

$$\mathcal{V}_{Q}(\zeta; F, G)(Q, T, A, Z) = \frac{\zeta(T, A, Z; \theta)}{G(T|A, Z)} - \int_{0}^{\infty} m_{\zeta}(v, A, Z; \theta, F) \cdot \frac{F(v|A, Z)}{1 - F(v|A, Z)} \cdot \frac{d\bar{M}_{Q}(v; G)}{G(v|A, Z)},$$
where $m_{\zeta}(v, a, z) = \mathbb{E}\{\zeta(T^{*}, Z^{*}; \theta) \mid T^{*} < v, A^{*} = a, Z^{*} = z\}.$

• Double robustness: if either $F = F_0$ or $G = G_0$, then $\mathbb{E} \left\{ \mathcal{V}_Q(\zeta; F, G)(Q, T, A, Z) \right\} = \beta^{-1} \cdot \mathbb{E} \left\{ \zeta(T^*, A^*, Z^*; \theta) \right\},$

Framework for handling triple biases

- Estimand θ defined by the distribution of $(T^*(1), T^*(0), Z^*)$; e,g, ATE: $\mathbb{E}[\nu\{T^*(1)\} \nu\{T^*(0)\}]$.
- $A \in \{1,0\}$ treatment. $T^* = A^*T^*(1) + (1-A^*)T^*(0)$.
- D residual censoring. $X = \min(T, Q + D)$, $\Delta = I(T < Q + D)$.

where $\beta = \mathbb{P}(Q^* < T^*)$.

Truncated & cen-free data

Full data $\zeta\{T^*(1), T^*(0), Z^*; \theta\}$ $\downarrow \text{AIPTW}$ Trunc-free & cen-free data $\mathcal{V}_A(\zeta; \mu, \pi)(T^*, A^*, Z^*; \theta)$

 $\mathcal{V}_{A}(\zeta;oldsymbol{\mu},\pi)(T^{*},A^{*},Z^{*}; heta) \ extruncAIPW \ \mathcal{V}_{Q}\circ\mathcal{V}_{A}(\zeta;oldsymbol{F},\pi,oldsymbol{G})(Q,T,A,Z; heta)$

F S_D (Eliminate truncation) π G

(b)

Observed data $\mathcal{V}_C \circ \mathcal{V}_Q \circ \mathcal{V}_A(\zeta; F, \pi, G, S_D)(Q, X, \Delta, A, Z; \theta)$

Simulation results

- 500 simulated data sets each with sample size 1000; estimand: $\theta = \mathbb{P}^*\{T^*(1) > 3\} = 0.5529$.
- Truncation rate: 22.8%; treatment rate: 50%; censoring rate 47.6%.

Orthogonal learning for HTE

- Conditional average treatment effect (CATE): $\tau_0(z) = \mathbb{E}\left[\nu\{T^*(1)\} \nu\{T^*(0)\}|Z^* = z\right]$
- Loss function for truncation-free and censoring-free data: $\ell(T^*, A^*, Z^*; \tau, m, \pi)$; e.g., R-loss (Nie and Wager 2021), DR-loss (Kennedy 2023), etc.
- Apply $\mathcal{V}_C \circ \mathcal{V}_Q$ to ℓ :

$$L(\tau; m, \pi, F, G, S_D) = \mathcal{V}_C \circ \mathcal{V}_Q(\ell; F, \pi, G, S_D)(Q, X, \Delta, A, Z).$$

We have

$$\tau_0 = \underset{\tau}{\operatorname{arg \, min}} \mathbb{E} \left\{ L(\tau; F, \pi, G, S_D) \right\}.$$

- ullet L is a Neyman orthogonal loss
 - \Rightarrow Achieve oracle rate if the nuisance parameters are estimated at faster than $n^{-1/4}$ rate.

Additional Information

- Wang, Y., Ying, A., & Xu, R. (2024). Doubly robust estimation under covariate-induced dependent left truncation. *Accepted in Biometrika*. arXiv:2208.06836.
- Code: https://github.com/wangyuyao98/left_trunc_DR.
- Email: yuw079@ucsd.edu (Yuyao Wang).