!|||:|4III:| I'. . II

Wnn)!
,.1! I| |
Il

Introduction

e In prospective cohort studies, only subjects with event times (1) greater than
enrollment times (Q*) are included. (e.g., pregnancy studies, aging studies, etc.)

* Double biases:
1) Selection bias from left truncation:
- Subjects with early event times tend not to be captured;
2) Confounding bias from non-randomized treatment.

e Conventional methods leveraging covariates information such as IPW or
regression-based methods can be used, but they are sensitive to model
misspecification.

e /*: measured covariates; A*: binary treatment.

o Observe (Q,T, A, Z) only it Q* < T*.

e Variables with “*” denote the variables in the data if there were no left truncation,
and variables without “*” denote the ones in the observed data.

Review of Wang et al. (2022)

o Derived the efficient influence curve (EIC) for 8 = E{v(T*)} and obtained an
doubly robust estimating function from the EIC:

v(T) —
(T|Z
where F'(t|z) =P(T* < t|Z* = z) and G(t|z) =
m,(v, 2,0, F) =E{v(T*) — 0 | T" <v,7* =z}

* Double robustness: E{U(0y; F, G)} = 0 if either F' = Iy or G = Gy, where
Fy, Gy denote the truth.

* Model double robustness: The estimator is consistent and asymptotically
normal (CAN) if both ' and G are asymptotically linear and one of them is

consistent; it achieves the semiparametric efficiency bound if both [ and G are
consistent.

F(w|Z) dMg(v;G)

| — F(w|Z) G®|Z)
P(Q" <t|Z* = 2),

Ul F,G) =

/ m,(v, 20, F) -

* Rate double robustness: The estimator is CAN and achieves the
semiparametric efficiency bound if both F' and G are consistent and the cross
integral product of the two estimation error rates is faster than root-n.

e Provided technical conditions for the asymptotic properties that appear to not
have been caretully examined in the literature for time-to-event data.

Extension of Wang et al. (2022)

For any unbiased estimating function u*(T™, A*, Z*; ) for 8 in the truncation-free data
satisfying E{u*(T™, A*, Z*;0)} = 0, consider the AIPW ¢ operator for left truncation:
UG, F,G)=V{u(T*, A", Z*,0), F, G}
u (T, A, Z: 0) F(w|A, Z) dMp(v;G) (1)
G(T|A, Z) — F(v|A, Z) G(|A, Z)
where F'(t|a,z) =P(T* < t|A* =a,2* = z2), G(tla,z) =P(Q* < t|A*=a, 2" = 2),
m(v,a, z;0,u*, F) =E{u* (T*, A*, 2%, 0) | T* < v, A*=a,Z" = z}.

* Double robustness: E|U(0y; F, G)| = 0 if either F' = F}, or G = G,

/Oom(v,A,Z;H,u*,F) 7
0

Assumptions

e Consistency: T* = A*T*(1) + (1 — A*)T*(0), Q* = A*Q*(1) + (1 — A)Q*(0)
e No unmeasured confounding: A* 1L (T*(a), Q*(a)) | Z*.
o Strict positivity: 0 < d < P(A*=1|2%) <1 —6.

e Conditional quasi-independence: QQ*(a) and T%(a) are conditional independent given
Z* on the observed data region, i.e., on the region of {q < t}.

e Overlap assumption for F' and G.
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Doubly robust estimation for propensity score

Supposed we assume a parametric model for the propensity score w(z;v) = P(A* = 1|2* = z;7),

and denote the corresponding estimating function in the truncation-free data as u*(A*, Z*;~).

o Apply (1) to u(A*, Z*;~v) = doubly robust estimating function for ~:
Ua(v: FLG) = uy(A, Zy ) - W(EF,G),

where

dMQ<”U; G)

WIEG) = G|A, Z)

1 ©  F(v|A,Z)
G(T|A, Z) /0 —F(v|A, Z)

e Construct the estimator 4 by solving 7, w* (A, Zi;~v) - Wi(F, G) = 0.

e Obtain estimators with model double robustness under asymptotic linearity and rate double
robustness from cross-fitting.

Multiply robust estimation for treatment effect

o Estimand: 6, = E{v{T*(a)}|, for a =0, 1.
® Denote u(a, z) = E{v(T*)|A* = a, Z* = z}.
e Consider the AIPW ;) estimating functions for 6, if there were no left truncation:

/U/Z(T*7 A*7 Z*7 06“ 7-‘-7 ILL) —

(A7) =AY {(T) =6} | (=D)A" —7n(Z)H{ula, 27) — 0}

W(Z*)a’{l _
o Apply (1) to w:('T™*, A*, Z*; 0, 7, 1):
Ua(00; F, G, 70, 1)
_ A1 — A)ta { v(T) — © [({v(t) — 0} dF(t|A, Z) | dMoq(v; G)}
w(Z){1l —n(Z)}— | G(T|A, Z) Jo 1— F(v|A, Z) G(v|A, Z)
VA DM 220}

m(Zp w2 (L= (2

@2y

e Construct the estimator @a by solving >, U,

Multiple Robustness FIG 7

v v
E{U,(0,; F,G,m, )} = 0 if the following two conditions are true: v v
(i) either F' = Fj or G = Gy; (ii) either m = my or p = L. \\; v .

Simulation for P{T™*(0) > 3} = 0.6796 (top 2 chunks) and P{T™(1) > 3} = 0.5629 (bottom 2 chunks) from 500
simulated data sets each with sample size 2000; the truncation rate is 22.8%; the treated rate is 50.0%. We take
fO v(t dF (t|a, Z). The bars marked in black and blue are the ones that are expected perform well.
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Multiply Robust Estimation of Treatment Effect for Time-to-event Qutcome
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Doubly robust estimation under marginal Cox model

e Under randomization, consider the marginal Cox model:
A (t|A%) = A(t)e’
o Denote A(t) = [i Ao(u)du

e Consider the estimating functions for (5, A) if there were no left truncation:
Di(B,\,t) =dM*(t; 3,\), Vt > 0;  D3(B,\) = / A dM*(t; B, M),

where M*(t; 8, A) = N*(t) — [ Y*(u)e’ dA(u), N*(t) = I(T* < t),
Y*t)=I1(T* > t).
o Apply (1) to D} and D5
Dy(B,\,t; F,G) =V{Di(B,\ t); F,G}, Vt>0,
Dy(B,\, F,G) =V{D3(3,\); F,G}.
K-fold cross-fitting algorithm:

o oplit the data into K folds of equal size with the index sets Z;, ..., Zx.

o For each fold k: A

e Estimate the nuisance parameters F and G using the out-of-k-fold data. = E_;, G_;.
e Consider the following estimating equations for (5 A):

1€1;
1€

e First solve for A(t) from (2) and then plug the estimate into (3)
= An estimating function U(8, F_1, G_4.) for §.

® Obtain the estimator 5Cf by solving % Ui(B, F_j,, G_i) = 0.

Rate Double Robustness

The estimator Bcf is consistent and asymptotically normal if both [ and

(G are consistent and the cross integral product of the two estimation error
rates is faster than root-n.

Simulation for 5 from 500 simulated data sets each with sample size 1000; the truncation rate
is 20.9%: the truth 5y = 0.3. The ones marked in black and blue are the ones that are expected
to perform well.
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Discussion

e When the treatment is not randomized, multiply robust estimators for the
hazard ratio of the marginal structural Cox model can be developed by
applying the AIPW g in (1) to the AIPW estimating equations for (3, A)
developed in Rava (2021).

e Right censoring can be handled using IPCW or AIPCW.

o References: Wang et al. (2022), arXiv:2208.06836.
Rava (2021), PhD thesis, UCSD.

e Email: yuw079Qucsd.edu (Y. Wang); aying9339Q@gmail.com (A. Ying);
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