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Introduction

• In prospective cohort studies, only subjects with event times (T ∗) greater than
enrollment times (Q∗) are included. (e.g., pregnancy studies, aging studies, etc.)
•Double biases:
1) Selection bias from left truncation:

- Subjects with early event times tend not to be captured;
2) Confounding bias from non-randomized treatment.

•Conventional methods leveraging covariates information such as IPW or
regression-based methods can be used, but they are sensitive to model
misspecification.

•Z∗: measured covariates; A∗: binary treatment.
•Observe (Q, T,A, Z) only if Q∗ < T ∗.
•Variables with ‘*’ denote the variables in the data if there were no left truncation,
and variables without ‘*’ denote the ones in the observed data.

Review of Wang et al. (2022)

•Derived the efficient influence curve (EIC) for θ = E{ν(T ∗)} and obtained an
doubly robust estimating function from the EIC:

U(θ;F,G) = ν(T )− θ
G(T |Z)

−
∫ ∞

0
mν(v, Z; θ, F ) · F (v|Z)

1− F (v|Z)
· dM̄Q(v;G)
G(v|Z)

,

where F (t|z) = P(T ∗ ≤ t|Z∗ = z) and G(t|z) = P(Q∗ ≤ t|Z∗ = z),
mν(v, z; θ, F ) = E{ν(T ∗)− θ | T ∗ < v,Z∗ = z}.
•Double robustness: E{U(θ0;F,G)} = 0 if either F = F0 or G = G0, where
F0, G0 denote the truth.
•Model double robustness: The estimator is consistent and asymptotically
normal (CAN) if both F̂ and Ĝ are asymptotically linear and one of them is
consistent; it achieves the semiparametric efficiency bound if both F̂ and Ĝ are
consistent.
•Rate double robustness: The estimator is CAN and achieves the
semiparametric efficiency bound if both F̂ and Ĝ are consistent and the cross
integral product of the two estimation error rates is faster than root-n.
•Provided technical conditions for the asymptotic properties that appear to not
have been carefully examined in the literature for time-to-event data.

Extension of Wang et al. (2022)

For any unbiased estimating function u∗(T ∗, A∗, Z∗; θ) for θ in the truncation-free data
satisfying E{u∗(T ∗, A∗, Z∗; θ)} = 0, consider the AIPW(F,G) operator for left truncation:

U(θ;F,G) = V {u∗(T ∗, A∗, Z∗; θ);F,G}

= u∗(T,A, Z; θ)
G(T |A,Z)

−
∫ ∞

0
m(v, A, Z; θ, u∗, F ) · F (v|A,Z)

1− F (v|A,Z)
· dM̄Q(v;G)
G(v|A,Z)

,
(1)

where F (t|a, z) = P(T ∗ ≤ t|A∗ = a, Z∗ = z), G(t|a, z) = P(Q∗ ≤ t|A∗ = a, Z∗ = z),
m(v, a, z; θ, u∗, F ) = E{u∗(T ∗, A∗, Z∗; θ) | T ∗ < v,A∗ = a, Z∗ = z}.
•Double robustness: E[U(θ0;F,G)] = 0 if either F = F0 or G = G0.

Assumptions

•Consistency: T ∗ = A∗T ∗(1) + (1− A∗)T ∗(0), Q∗ = A∗Q∗(1) + (1− A∗)Q∗(0)
•No unmeasured confounding: A∗ ⊥⊥ (T ∗(a), Q∗(a)) | Z∗.
• Strict positivity: 0 < δ ≤ P(A∗ = 1|Z∗) ≤ 1− δ.

•Conditional quasi-independence: Q∗(a) and T ∗(a) are conditional independent given
Z∗ on the observed data region, i.e., on the region of {q < t}.
•Overlap assumption for F and G.

Doubly robust estimation for propensity score

Supposed we assume a parametric model for the propensity score π(z; γ) = P(A∗ = 1|Z∗ = z; γ),
and denote the corresponding estimating function in the truncation-free data as u∗A(A∗, Z∗; γ).
•Apply (1) to u∗A(A∗, Z∗; γ) ⇒ doubly robust estimating function for γ:

UA(γ;F,G) = u∗A(A,Z; γ) ·W (F,G),
where

W (F,G) = 1
G(T |A,Z)

−
∫ ∞

0

F (v|A,Z)
1− F (v|A,Z)

· dM̄Q(v;G)
G(v|A,Z)

.

•Construct the estimator γ̂ by solving ∑n
i=1 u

∗
A(Ai, Zi; γ) ·Wi(F̂ , Ĝ) = 0.

•Obtain estimators with model double robustness under asymptotic linearity and rate double
robustness from cross-fitting.

Multiply robust estimation for treatment effect

•Estimand: θa = E[ν{T ∗(a)}], for a = 0, 1.
•Denote µ(a, z) = E{ν(T ∗)|A∗ = a, Z∗ = z}.
•Consider the AIPW(π,µ) estimating functions for θa if there were no left truncation:

u∗a(T ∗, A∗, Z∗; θa, π, µ) = (A∗)a(1− A∗)1−a{ν(T ∗)− θ}
π(Z∗)a{1− π(Z∗)}1−a + (−1)a{A∗ − π(Z∗)}{µ(a, Z∗)− θ}

π(Z∗)a{1− π(Z∗)}1−a .

•Apply (1) to u∗a(T ∗, A∗, Z∗; θa, π, µ):
Ua(θa;F,G, π, µ)

= Aa(1− A)1−a

π(Z)a{1− π(Z)}1−a

{
ν(T )− θ
G(T |A,Z)

−
∫ ∞

0

∫ v
0 {ν(t)− θ} dF (t|A,Z)

1− F (v|A,Z)
· dM̄Q(v;G)
G(v|A,Z)

}

+ (−1)a{A− π(Z)}{µ(a, Z)− θ}
π(Z)a{1− π(Z)}1−a ·W (F,G).

•Construct the estimator θ̂a by solving ∑n
i=1Ua(θa; F̂ , Ĝ, π̂, µ̂) = 0.

Multiple Robustness

E{Ua(θa;F,G, π, µ)} = 0 if the following two conditions are true:
(i) either F = F0 or G = G0; (ii) either π = π0 or µ = µ0.
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Simulation for P{T ∗(0) > 3} = 0.6796 (top 2 chunks) and P{T ∗(1) > 3} = 0.5629 (bottom 2 chunks) from 500
simulated data sets each with sample size 2000; the truncation rate is 22.8%; the treated rate is 50.0%. We take
µ̂(a, Z) =

∫∞
0 ν(t) dF̂ (t|a, Z). The bars marked in black and blue are the ones that are expected perform well.
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Doubly robust estimation under marginal Cox model

•Under randomization, consider the marginal Cox model:
λ∗(t|A∗) = λ0(t)eβA

∗

•Denote Λ(t) =
∫ t

0 λ0(u)du.
•Consider the estimating functions for (β,Λ) if there were no left truncation:

D∗1(β,Λ, t) = dM∗(t; β,Λ), ∀t ≥ 0; D∗2(β,Λ) =
∫ τ2

τ1
A dM∗(t; β,Λ),

where M∗(t; β,Λ) = N∗(t)−
∫ t

0 Y
∗(u)eβA∗dΛ(u), N∗(t) = I(T ∗ ≤ t),

Y ∗(t) = I(T ∗ ≥ t).
•Apply (1) to D∗1 and D∗2:

D1(β,Λ, t;F,G) = V {D∗1(β,Λ, t);F,G}, ∀t ≥ 0,
D2(β,Λ;F,G) = V {D∗2(β,Λ);F,G}.

K-fold cross-fitting algorithm:
1 Split the data into K folds of equal size with the index sets I1, ..., IK.
2 For each fold k:
• Estimate the nuisance parameters F and G using the out-of-k-fold data. ⇒ F̂−k, Ĝ−k.
• Consider the following estimating equations for (β,Λ):

1
|Ik|

∑
i∈Ik

D1i(β,Λ, t; F̂−k, Ĝ−k) = 0, (2)

1
|Ik|

∑
i∈Ik

D2i(β,Λ; F̂−k, Ĝ−k) = 0. (3)

• First solve for Λ(t) from (2) and then plug the estimate into (3)
⇒ An estimating function Uk(β, F̂−k, Ĝ−k) for β.

3 Obtain the estimator β̂cf by solving ∑K
k=1Uk(β, F̂−k, Ĝ−k) = 0.

Rate Double Robustness

The estimator β̂cf is consistent and asymptotically normal if both F̂ and
Ĝ are consistent and the cross integral product of the two estimation error
rates is faster than root-n.

Simulation for β from 500 simulated data sets each with sample size 1000; the truncation rate
is 20.9%; the truth β0 = 0.3. The ones marked in black and blue are the ones that are expected
to perform well.
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Discussion

•When the treatment is not randomized, multiply robust estimators for the
hazard ratio of the marginal structural Cox model can be developed by
applying the AIPW(F,G) in (1) to the AIPW estimating equations for (β,Λ)
developed in Rava (2021).
•Right censoring can be handled using IPCW or AIPCW.
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