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Background

• In prospective cohort studies, only subjects with
event times greater than enrollment times are
included.
• Subjects with early event times tend not to be

captured, leading to selection bias.
•Conventional methods adjusting for left truncation

typically hinges heavily on the assumption that the
left truncation time and the event time are
independent.
•When the left truncation time depends on

additional covariates, inverse probability of
truncation weighting can be used, but it is sensitive
to model misspecification.

Our Contributions

• Leverage semiparametric theory to find the
efficient influence curve (EIC) of ψ := E[ν(T )],
where ν is a known function.
•Construct EIC-based estimators that enjoy

model double-robustness and rate double
robustness.
•Apply our estimator to analyze a data set

related to Alzheimer’s disease research.

Notation

•Q, T : left truncation time and event time.
•Z: covariates.
•F,G: full data CDF of T |Z and Q|Z respectively.
• β := P(Q < T )
• M̄Q(t) := N̄Q(t)− ĀQ(t) is a backward martingale

with respect to F̄t, where
N̄Q(t) := I(t ≤ Q < T ),

ĀQ(t) :=
∫ ∞
t
I(Q ≤ s < T )dG(s|Z)

G(s|Z)
,

F̄t := σ{Z, I(Q < T ), I(s ≤ T ), I(s ≤ Q) : s ≥ t}.
•E∗(·): expectation under observed data

distribution.

Methods

•The efficient influence curve of ψ is

φ(Q, T, Z;ψ, F,G) = β ·
{
ν(T )− ψ
G(T |Z)

−
∫ m(v, Z;F )− ψF (v|Z)

G(v|Z)(1− F (v|Z))
dM̄Q(v)

}
,

where m(v, Z;F ) = E[ν(T )I(T < v)|Z] is the
trimmed conditional mean of ν(T ) in full data.
•

ψ̂DR ←− Solving
n∑
i=1

φ(Qi, Ti, Zi;ψ, F̂ , Ĝ) = 0,

where F̂ and Ĝ are the first stage estimators for F
and G.
•Plugging constant first stage estimators F̂ ≡ 0 or
Ĝ ≡ 1 into ψ̂DR leads to estimators that only
depend on one of the first stage estimators:

ψ̂IPW1 =

1
n

n∑
i=1

ν(Ti)
Ĝ(Ti|Zi)

/1
n

n∑
i=1

1
Ĝ(Ti|Zi)

 ,
and

ψ̂IPW2 =

1
n

n∑
i=1

µν(Zi; F̂ )
ŜT (Qi|Zi)

/1
n

n∑
i=1

1
ŜT (Qi|Zi)

 ,
where ŜT (Qi|Zi) = 1− F̂ (Qi|Zi) and
µν(Z; F̂ ) =

∫
ν(t)dF̂ (t|Z).

Double Robustness

E∗[φ(Q, T, Z;ψ0, F,G)] = 0 if either F = F0 or
G = G0, where F0, G0 denote the true CDF’s.
• (Model double robustness) ψ̂DR is

consistent and asymptotically normal when
when one of F̂ and Ĝ converges to the truth at
root-n rate and the other one converges.
• (Rate double robustness) ψ̂DR is

consistent and asymptotically normal and
achieves the semiparametric efficiency bound if
both models for F or G are correct and the
product of the convergence rates for F̂ and Ĝ is
o(n−1/2).

Simulation Results
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Figure: The absolute bias and the coverage probability of 95% confidence intervals with F̂ and Ĝ fitted using Cox models under different
data generation scenarios. Under the scenarios where Cox models are wrong for estimating F and/or G, T and/or Q are simulated from
a mixture of Cox model with quadratic and interaction terms and AFT model with quadratic and interaction terms.

Application to HHP/HAAS Data

We consider the data collected between 1965 and 2012 from Honolulu Heart Program (HHP) and Honolulu
Asia Aging Study (HAAS). Age is the time scale of interest. The data set contains 2318 Japanese men that
were alive at the start of HAAS, so age at death (late-life mortality) is left truncated. The covariates include
education, apolipoprotein E genotype, mid-life acohol and cigarettes consumption, systolic blood pressure,
ventricular rate, and grip strength. Since age at the start of HAAS can be predicted by education, alcohol
consumption, systolic blood pressure, ventricular rate and grip strength, which are also risk factors of mortality,
left truncation is nonrandom for this data set. The first stage estimators F̂ and Ĝ are obtained using Cox
models with all covariates included.
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Table: Estimates using difference methods from the HHP/HAAS data.

Estimand Method Estimate SE / boot SE 95% CIs / 95% boot CIs
E(T ) DR 86.121 0.232 / 0.218 (85.666, 86.576) / (85.693, 86.549)

IPW 85.911 0.211 (85.499, 86.324)
IPW1 86.097 0.192 (85.722, 86.473)
IPW2 86.079 0.196 (85.694, 86.464)
naive 87.942 0.103 (87.741, 88.144)

P(T > 80) DR 0.800 0.016 / 0.016 (0.768, 0.832) / (0.770, 0.831)
IPW 0.787 0.015 (0.757, 0.817)
IPW1 0.800 0.016 (0.770, 0.831)
IPW2 0.800 0.016 (0.769, 0.831)
naive 0.904 0.007 (0.890, 0.918)

Discussion
•The double robustness of our estimator can be easily extended to estimating the average treatment effect with

non-randomly truncated time-to-event data in randomized trials.
•The extension to the case with censoring is nontrivial and is an interesting future direction.


