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Left truncation and selection bias

e Quantity of interest: time to event (T)

e T is left truncated by the enroliment time (Q) if only subjects with T > @ are included

in the data.
> e.g., prevelant cohort studes, aging studies.
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Figure: A toy example for aging study; ‘X’ - enrollment times; dots - times to events.
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Example: CNS lymphoma data

e Data from a study on central nervous system (CNS) lymphoma (Wang et al., 2015)
[Publicly available in the supplement of Vakulenko-Lagun et al. (2022)]

@ Quantity of interest: overall survival

CR

66 censored

@ Original data with 172 patients
Relapse
8 .
46 censored » @ -timeto CR

@ Restricted data with 98 patients
» @ - time to relapse

» T - time to death

Diagnosis

CR: complete response. [Figure from Vakulenko-Lagun et
al., (2022)]
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Example: HAAS data

2560 subjects who were alive and
did not have cognitive impairment

!

463 (18.1%) subjects were
loss to follow-up (censored)
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Honolulu Heart Program Honolulu Asia Aging Study

(HHP, 1965-1990) (HAAS, 1991-2012)

@ Quantity of interest: Cognitive impairment-free survival on the age scale.
@ T - age to moderate cognitive impairment or death
@ @ - age at entry of HAAS

— Selection bias
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Literature

Under the random left truncation assumption

o Likelihood-based approaches
(Woodroofe, 1985; Wang et al., 1986; Wang, 1989, 1991; Qin et al. 2011)

@ Random truncation assumption can be weakened to quasi-independence assumption
(Tsai, 1990)

I' The quasi-independence assumption may be violated.

@ CNS lymohoma data:

> It is plausible that time to death and time to relapse are dependent (Vakulenko-Lagun et al.,
2022).

@ HAAS data:

» Violation of quasi-independence is detected by conditional Kendall's tau test (Tsai, 1990);
> tau = 0.0426 with p-value 0.0014.
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Literature

When the left truncation time and the event time are dependent:
@ Copula models (Chaieb et al., 2006; Emura et al., 2011; Emura & Wang, 2012)

@ Structural transformation models (Efron & Petrosian, 1994; Chiou et al., 2019)

I Depend on strong model assumptions
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Literature

When the left truncation time and the event time are dependent:
@ Copula models (Chaieb et al., 2006; Emura et al., 2011; Emura & Wang, 2012)

@ Structural transformation models (Efron & Petrosian, 1994; Chiou et al., 2019)
I Depend on strong model assumptions

@ Incorporate left truncation time as a covariate in the event time model (Gail et al., 2009;
Mackenzie, 2012; Cheng & Wang 2015).

> e.g., Entry-age adjusted age-scale model (Gail et al., 2009)

I Biologically unjustified; depend on model assumptions.
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Literature

When the left truncation time and the event time are dependent:
@ Copula models (Chaieb et al., 2006; Emura et al., 2011; Emura & Wang, 2012)

@ Structural transformation models (Efron & Petrosian, 1994; Chiou et al., 2019)

I Depend on strong model assumptions

@ Incorporate left truncation time as a covariate in the event time model (Gail et al., 2009;

Mackenzie, 2012; Cheng & Wang 2015).
> e.g., Entry-age adjusted age-scale model (Gail et al., 2009)

I Biologically unjustified; depend on model assumptions.

I Do not use covariate information.
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Literature
When the dependence is captured by measured covariates:
In regression settings:

@ Cox model with risk set adjustment

For marginal survival probabilities:

@ Inverse probability weighting (IPW) estimators (Vakulenko-Lagun et al., 2022).

I Sensitive to misspecification of the truncation model; inefficient.
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Literature
When the dependence is captured by measured covariates:

In regression settings:

@ Cox model with risk set adjustment

For marginal survival probabilities:
@ Inverse probability weighting (IPW) estimators (Vakulenko-Lagun et al., 2022).

I Sensitive to misspecification of the truncation model; inefficient.

Motivate us to seek estimators that
@ Have more protection against model misspecification;
@ More efficient;

@ Allow us to incorporate nonparametric methods (which are known to have slower than
root-n convergence) to obtain root-n consistent estimators.
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Our contributions

@ Derive the efficient influence curve (EIC) for the expectation of an arbitrarily transformed
survival time.
@ Construct EIC-based estimators that are shown to have favorable properties:

» Model double robustness

» Rate double robustness

» Semiparametric efficiency
@ Provide technical conditions for the asymptotic properties that appear to not have been
carefully examined in the literature for time-to-event data.
Our work represents the first attempt to construct doubly robust estimators in the
presence of left truncation.

» Does NOT fall under the established framework of coarsened data where doubly robust
approaches are developed.
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Notation and estimand

Q - left truncation time; T - event time; Z - covariates

Full data - if there were no left truncation
We observe O = (Q, T, Z) only if Q < T

F, G, H: the full data CDF's of T|Z, Q|Z and Z, respectively.
superscript *: quantities related to the full data distribution, e.g., P*, E*, p*, P*

without *: quantities related to the observed data distribution, e.g., P, E, p, P
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Notation and estimand

Q - left truncation time; T - event time; Z - covariates

Full data - if there were no left truncation
We observe O = (Q, T, Z) only if Q < T

F, G, H: the full data CDF's of T|Z, Q|Z and Z, respectively.
superscript *: quantities related to the full data distribution, e.g., P*, E*, p*, P*

without *: quantities related to the observed data distribution, e.g., P, E, p, P

Estimand: 6 := E*{v(T)}, where v is a given function.
> e.g., when v(t) = 1(t > ty), 6 =P*(T > ty) (survival probability).
> e.g., when v(t) = min(t, tp), 6 = E*{min(T, to)} (RMST).
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Assumptions

© Conditional quasi-independence:
Q@ and T are conditionally “independent” given Z on the observed region {t > q}.

@ Positivity: G(T|Z) >0 ass.
© Overlap: There exist d1,02 > 0 such that 1 — F(Q|Z) > 61 a.s. and G(T|Z) > 02 ass..

@ Consider the semiparametric model under Assumptions 1 and 2.

@ Assume the true distribution also satisfies Assumption 3.
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Deriving the Efficient Influence Curve (EIC)

@ Inverse probability weighting (IPW) identification:

QZE{GV((T?ZJ/E{G(;M)}’

G(q|z) — e fqoo Ot(t|Z)dt, a(t|z) _ 5

pPq|z(t|z)
(Q<t<T|Z=2)

@ Derive an influence curve (IC): ¢(0) s.t. E{p(0)} =0 and

0
5P

e=0 e =0

@ Tangent space: Lg(PT’z) + Lg(PQ,Z)-

@ Project the IC onto the tangent space — EIC

—E{p(0)S(0)}. §(0)= o logp(0)|
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Efficient influence curve and double robustness

o Efficient influence curve:
90(0;97":7 G’H) :5 U(ev F’ G)v
where § =P*(Q < T) and

UT) =0 [Yper ~ F(t]2)  dMq(t; G)
6(T12) J B0 T <02y RE 6(1]2)

@ The semiparametric efficiency bound : E(¢?).

U@ F,G) =
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Efficient influence curve and double robustness

o Efficient influence curve:
90(0;97":7 G’H) :5 U(ev F’ G)v
where § =P*(Q < T) and

UT) =0 [Yper ~ F(t]2)  dMq(t; G)
6(T12) J B0 T <02y RE 6(1]2)

@ The semiparametric efficiency bound : E(¢?).

U@ F,G) =

Double robustness:

E{U(eo, F, G)} =0 if either F = Fy or G = Gy.
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Estimation
Let {O;}"_; be an observed random sample of size n; O; = (Q;, T;, Z;).

o First estimate F and G

@ Then solve the following equation for 0:

zn: Ui(6; F,G) =0
i=1
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Estimation

Let {O;}"_; be an observed random sample of size n;

o First estimate F and G

@ Then solve the following equation for 0:

zn: Ui(6; F,G) =
i=1

@ Closed-form solution:

O = (Qi, Ti, Zi).

by = (Z

i=1

n

- /’i va)
6(Tilzi) o G(V\Z'){l— (VIZ')}

MQ’,'(V; @)

-

(OdE(HZ) o,
& v|z 1= Fluizyy Ml G)D
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Model double robustness under asymptotic linearity
Suppose

o Fand G uniformly converge to F* and G*, respectively;
o F and G are asymptotically linear.

If either F* = Fy or G* = Gy, then

V(g — 60) % N(0, 0?).

Furthermore, when both F* = Fy and G* = Gy,

° HAd, acheives the semiparametric efficiency bound;

@ 02 can be consistently estimated by 52, where

n n -1
Ay 1 ~ A A A ~
~2 2 2 -1
— - (04r, F, G), = 1/G(T;|Z .
6% =p" — iE—l Ui (0 ), B {” ;—1 /G(Til )}
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Rate double robustness with cross-fitting

K-fold cross-fitting

1. Split the data into K folds of (almost) equal size with
the index sets 73, ..., Zk.
2: for k=1to K do
3:  Estimate F and G with the out-of-k-fold data
— F(K) and G(=H)
4: end for
5. Obtain O by solving

K
SN U0, FER, G =0,

k=1 i€y

K folds

|:| Estimate F and G

. Construct estimating equation
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Rate double robustness with cross-fitting

Out-of-sample cross integral product:

Di(F, G: Fo, Go) :=E (ET [ /:2 {a(t, Zii F) - a(t, Z; Fo)}

1

1 1
Yi(t) d { AR Go(t|ZT)}|

)

where

Jo {v(u) — 0}dF (u|2)
1- F(t2) ’

Yi(t) =L@ =t < Ty).

a(t,Z;F) =
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Rate double robustness

Suppose
@ F and G are uniformly consistent;
e Di(F,G; Fo, Go) = o(n’1/2).

We have
o /n(fcr — bo) LN N(0, 0?), where 02 = E(?);
@ 0. achieves the semiparametric efficiency bound;

@ 02 can be consistently estimated by 6%, where
1K
0% = B2 23 3 UP{der, P9, 60},
k=1i€Zy
-1
I £ v) ppen S
== k’ (TilZ)

Nonparametric methods can be used to estimate F and G!
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Extensions to handle right censoring

C: censoring time; X :=min(T,C); A:=1(T < ()
Sc(t) :=P(C>t), Sp(t):=P(D>t), where D=C—-Q
Assume noninformative censoring.

Two scenarios:

@ Censoring can happen before truncation
» P*(C < Q) > 0; subjects with Q < X are included; C 1L (Q, T, Z) in the full data.

UC].(Q; FX7 G7SC)

5 X)G( X|Z —F(t]2) G6(t12)

@ Censoring always after truncation

09 0 J§ A1) —0)/SCIR(2) s )

» P*(Q < C) =1, subjects with Q < T are included; D Il (Q, T, Z) in the onbserved data.

A

Ucz(e; F, G,SD) (X Q

/ Jo {v(u) — 0}dF (ulz) d/\?lQ(r;G)
1—F(t|2) G(t|2)

18/35



Simulation

500 simulated data sets each with sample size 1000.
Truncation rate: 29.5%; 6, = P*(T > 3) = 0.576.
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Application: CNS lymphoma data

e Data from a study on central nervous system (CNS) lymphoma (Wang et al., 2015)
[Publicly available in the supplement of Vakulenko-Lagun et al. (2022)]

CR

66 censored

8 Relapse
46 censored

Diagnosis

CR: complete response. [Figure from
Vakulenko-Lagun et al., (2022)]

— Restrict to the 98 patients that were relapsed, for
which the time is recorded.

@ Quantity of interest: overall survival.

» T - time to death
» @ - time to relapse

@ Include two binary treatment variables:

» Chemotherapy
» Radiation therapy
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Application: CNS lymphoma data
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Figure: Estimates of the overall survival for the CNS lymphoma data. )3



Application: HAAS data

2560 subjects who were alive and
did not have cognitive impairment

!
—0—0—0—0—0—0—0—0—0—0—0—
\ J \ )

463 (18.1%) subjects were
loss to follow-up (censored)

I I
Honolulu Heart Program Honolulu Asia Aging Study
(HHP, 1965-1990) (HAAS, 1991-2012)

@ Quantity of interest: Cognitive impairment-free survival on the age scale.

e Covariates:

Education (years)

APOE positive (yes/no)

Mid-life alcohol consumption (light/heavy)
Mid-life cigarette consumption (yes/no)

v

v vyy
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Application: HAAS data
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Figure: Estimated cognitive impairment-free survival and their 95% bootstrap confidence intervals (shaded,
except for PL and naive) for the HAAS data. 23/35



Discussion

@ We derived the efficient influence curve for the mean of an arbitrarily transformed survival
time and construct doubly robust estimators.

Extension: for parameter 6 that can be identified from an unbiased full data estimating
function u*(T,Z;0). We consider the following AIPW estimating function for left

truncation:
u(T,Z;0) [~ F(tZ)  dMq(t; G)
V(0; F = — — E*{u*(T,Z; T y4x . .
0.6 =Gy -, BT Z0NT < w2 T SE
@ ArXiv preprint: arXiv:2208.06836

R package: truncAIPW

Code: https://github.com/wangyuyao98/left_trunc_.DR
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https://arxiv.org/abs/2208.06836
https://github.com/wangyuyao98/left_trunc_DR

Appendix
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Assumptions
f, g, h: the densities of T|Z, Q|Z and Z, respectively.

Assumption 1 (Conditional quasi-independence)

The observed data density for (Q, T, Z) satisfies

pa.7.2(q.t,2) = { g(”z)g(ﬂz)h(Z)/ﬂ,

)

where  =P*(Q < T) = [1(q < t)f(t|z)g(q|z)h(z) dt dq dz.

ift>q,
otherwise,

Assumption 2 (Positivity)
G(T|Z) >0 a.s.

Assumption 3 (Overlap)

There exists 0 < 71 < T < 0o such that T > 11 a.s., Q <7 a.s.;
F(m|Z) <1— 6, a.s. for some constants §; > 0 and 6, > 0.

also G(m1|Z) > 61 a.s. and




Inverse probability weighting (IPW) identification

@ Under Assumptions 1 and 2,

G_E{GV((TT)Z)}/E{G(%Z)}‘

@ Let « be the reverse time hazard function of Q given Z in the full data:

P*(g-h<Q<qlR<q,Z=2)

h—0+ h
_m Tla-h<Q<gqlZ=2) 06(ql2)/9q
h—0+  hP*(Q < q|Z=2z) G(qlz)

= G(qlz) = exp{— [” a(t|z)dt}.

@ « can be identified:
o(qlz) = PQ|Z(Q|Z)
P(R<qg<T|Z=2)

— G can be identified from the observed data distribution.
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Reverse time counting process and backwards martingale
For t > 0, let

No(t) =1(t < Q < T),
Fi=0c{Z,1(Q< T),I(s<Q<T),1(s<T):s>t}.

Define

Aq(t: G)z/too 1(Q<s< T)a(s|Z)ds:/too 1Q<s< T)dG(Ss|Z)'

Then

Mq(t; G) := Ng(t) — Ag(t; G)

is a backwards martingale with respect to {]:-t}tzo in the observed data.
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Two special cases
@ By setting F =0 — IPW estimator

N N7 Sl
Opw.q = {; @(T,-Z,-)}/{,Z; G(T,-|Z,.)}’

@ By setting G=1 - Regression-based estimator

A - ! h

Oreg.T1 = {; ]-_ﬁ(QI|ZI)}
"oy TH{1 - QIZ + 0/ dF(t‘Z)
[Z (T3~ A(QIZ)} + o v 1

i=1 - (Q,|Z,)

> [UTH{1 = F(Q|Z)} + [2 v(t)dF(t|Z)] identifies E* {1(T)|Q, Z}.

@ Another regression based estimator is
i B {u(T))|Z;} /{Z 1 }
= 1 - F(Qi|Z) 29/35

—~1- F(Qi|Z)

OReg. T2 =




Some norm notation

For a random function X(t,z) with t € [11, 7] and z € Z, define

tG[Tl 77'2]

IX(, 2)lFfv2 = E [TV{X(-, 2)}] .

IX(, 2)lap = E {sup IX(t,Z)z},

o TV{X(:,z)} =supp Zle |X(xj,z) — X(xj_1, z)| is the total variation of X(-, z) on the interval
[71, 72]

@ P is the set of all possible partitions 71 = xp < x1 < ... < xy = 72 of [11,72]
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Assumptions for F and G for 6,
@ Uniform convergence: There exist F* and G* such that

=o(1), |6(12)-6*(12)

= o(1).

sup,2

|F(12) - F*(12)

sup,2

o Asymptotic linearity:

F(tlz) — F*(t]z) = %Z{l(t,z, 0) + Ri(t, 2),

i=1

G(tl2) — G*(tz) = %Z{g(t,z, 0)) + Ro(t, 2).

i=1

where HRI(’ Z)||sup,2 = O(n_l/z)' HRQ(v Z)||sup,2 - o(n_1/2),
and either [|Ri(-, Z) vy, = o(1) or [[Ra(+, Z) [ty » = o(1).

@ e.g., it is satisfied when Cox model is used to estimate F and G.
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Norm notation

Let O = {(Q;, Ti,Z) : i = 1,..., m} denote the data used to obtain F and G, and let O; = (Q;, T}, Z:)
be an copy of the data that is independent of, but from the same distribution as O.

te[m,m]

B 2
1 = Foll? a2 =B | E4 { sup ﬁ(r|zo—Fo(t|zf))} ,

2
1G — Gol? qupo = E [ E; { sup  |G(t|Z) — GO(tZT)‘}

te[r,m]
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Assumptions on F and G for 6
o Uniform Consistency:

H’E - FOHT,SUP,Z =o(1), H@ - G0||T,sup,2 =o(1)

@ Product rate condition: DT(IE, G Fo, Go) = o(n~1/2).
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Simulation
The models in red are misspecified.

SD: standard deviation, SE: standard error, CP: coverage probability.

Estimator bias  SD  SE/boot SE CP/boot CP
dr-Cox1-Cox1 -0.0016 0.021 0.020/0.020  0.948/0.946
dr-Cox1-Cox2 -0.0014 0.020 0.019/0.020  0.930/0.944
dr-Cox2-Cox1 -0.0010 0.020 0.019/0.020  0.938/0.946
dr-Cox2-Cox2  0.0184 0.019 0.018/0.019  0.838/0.836
cf-RF-RF 0.0032 0.021 0.023/0.025 0.966,/0.976
IPW.Q-Cox1 ~ -0.0004 0.020 0.018/0.020 0.924/0.944
IPW.Q-Cox2 0.0184 0.018 0.017/0.019 0.814/0.832
IPW.Q-RF -0.0064 0.022 0.019/0.022  0.886/0.956
Reg.T1-Cox1  -0.0008 0.020 - /0.020 - /0.944
Reg.T1-Cox2  0.0183 0.018 - /0.019 - /0.842
Reg. TI-RF  -0.0073 0.022 - /0.022 - /0.934
Reg.T2-Cox1  -0.0010 0.020 - /0.020 - /0.942
Reg.T2-Cox2 0.0181 0.018 - /0.019 - /0.844
Reg.T2-RF -0.0070  0.022 - /0.022 - /0.940
PL 0.0193 0.018 - /0.018 - /0.824
naive 0.1389 0.014 0.014/0.014  0.000/0.000
full data -0.0007 0.013 0.013/0.013  0.956/0.944
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CNS lymphoma data

Survival probability

Figure: Estimates of the overall survival for the CNS lymphoma data with their 95% bootstrap confidence

intervals.
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