
Doubly Robust Estimation under Covariate-induced Dependent
Left Truncation

Yuyao Wang

Department of Mathematics, University of California San Diego
yuw079@ucsd.edu

Joint work with:

Andrew Ying, Google

Ronghui (Lily) Xu, University of California San Diego

1 / 35



Left truncation and selection bias

Quantity of interest: time to event (T )
T is left truncated by the enrollment time (Q) if only subjects with T > Q are included
in the data.

I e.g., prevelant cohort studes, aging studies.
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Figure: A toy example for aging study; ‘×’ - enrollment times; dots - times to events.
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Example: CNS lymphoma data

Data from a study on central nervous system (CNS) lymphoma (Wang et al., 2015)

[Publicly available in the supplement of Vakulenko-Lagun et al. (2022)]

CR: complete response. [Figure from Vakulenko-Lagun et

al., (2022)]

Quantity of interest: overall survival

I T - time to death

Original data with 172 patients
I Q - time to CR

Restricted data with 98 patients
I Q - time to relapse
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Example: HAAS data

Quantity of interest: Cognitive impairment-free survival on the age scale.

T - age to moderate cognitive impairment or death

Q - age at entry of HAAS

→ Selection bias
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Literature

Under the random left truncation assumption

Likelihood-based approaches
(Woodroofe, 1985; Wang et al., 1986; Wang, 1989, 1991; Qin et al. 2011)

Random truncation assumption can be weakened to quasi-independence assumption
(Tsai, 1990)

! The quasi-independence assumption may be violated.

CNS lymohoma data:

I It is plausible that time to death and time to relapse are dependent (Vakulenko-Lagun et al.,

2022).

HAAS data:

I Violation of quasi-independence is detected by conditional Kendall’s tau test (Tsai, 1990);
I tau = 0.0426 with p-value 0.0014.
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Literature

When the left truncation time and the event time are dependent:

Copula models (Chaieb et al., 2006; Emura et al., 2011; Emura & Wang, 2012)

Structural transformation models (Efron & Petrosian, 1994; Chiou et al., 2019)

! Depend on strong model assumptions

Incorporate left truncation time as a covariate in the event time model (Gail et al., 2009;

Mackenzie, 2012; Cheng & Wang 2015).
I e.g., Entry-age adjusted age-scale model (Gail et al., 2009)

! Biologically unjustified; depend on model assumptions.

! Do not use covariate information.
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Literature
When the dependence is captured by measured covariates:

In regression settings:

Cox model with risk set adjustment

For marginal survival probabilities:

Inverse probability weighting (IPW) estimators (Vakulenko-Lagun et al., 2022).

! Sensitive to misspecification of the truncation model; inefficient.

Motivate us to seek estimators that

Have more protection against model misspecification;

More efficient;

Allow us to incorporate nonparametric methods (which are known to have slower than
root-n convergence) to obtain root-n consistent estimators.
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Our contributions

Derive the efficient influence curve (EIC) for the expectation of an arbitrarily transformed
survival time.

Construct EIC-based estimators that are shown to have favorable properties:
I Model double robustness
I Rate double robustness
I Semiparametric efficiency

Provide technical conditions for the asymptotic properties that appear to not have been
carefully examined in the literature for time-to-event data.

Our work represents the first attempt to construct doubly robust estimators in the
presence of left truncation.

I Does NOT fall under the established framework of coarsened data where doubly robust
approaches are developed.
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Notation and estimand

Q - left truncation time; T - event time; Z - covariates

Full data - if there were no left truncation

We observe O = (Q,T ,Z ) only if Q < T

F , G , H: the full data CDF’s of T |Z , Q|Z and Z , respectively.

superscript *: quantities related to the full data distribution, e.g., P∗, E∗, p∗, P∗

without *: quantities related to the observed data distribution, e.g., P, E, p, P

Estimand: θ := E∗{ν(T )}, where ν is a given function.
I e.g., when ν(t) = 1(t > t0), θ = P∗(T > t0) (survival probability).
I e.g., when ν(t) = min(t, t0), θ = E∗{min(T , t0)} (RMST).
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Assumptions

1 Conditional quasi-independence:
Q and T are conditionally “independent” given Z on the observed region {t > q}.

2 Positivity: G (T |Z ) > 0 a.s.

3 Overlap: There exist δ1, δ2 > 0 such that 1− F (Q|Z ) ≥ δ1 a.s. and G (T |Z ) ≥ δ2 a.s..

Consider the semiparametric model under Assumptions 1 and 2.

Assume the true distribution also satisfies Assumption 3.
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Deriving the Efficient Influence Curve (EIC)

Inverse probability weighting (IPW) identification:

θ = E
{

ν(T )

G (T |Z )

}/
E
{

1

G (T |Z )

}
,

G (q|z) = e−
∫∞
q α(t|z)dt , α(t|z) =

pQ|Z (t|z)

P (Q ≤ t < T |Z = z)

Derive an influence curve (IC): ϕ(O) s.t. E{ϕ(O)} = 0 and

∂

∂ε
θ(Pε)

∣∣∣∣
ε=0

= E {ϕ(O)S(O)} , S(O) =
∂

∂ε
log pε(O)

∣∣∣∣
ε=0

.

Tangent space: L02(PT ,Z ) + L02(PQ,Z ).

Project the IC onto the tangent space → EIC
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Efficient influence curve and double robustness

Efficient influence curve:

ϕ(O; θ,F ,G ,H) = β · U(θ;F ,G ),

where β = P∗(Q < T ) and

U(θ;F ,G ) =
ν(T )− θ
G (T |Z )

−
∫ ∞
0

E∗{ν(T )− θ | T < t,Z} · F (t|Z )

1− F (t|Z )
· dM̄Q(t;G )

G (t|Z )
.

The semiparametric efficiency bound : E(ϕ2).

Double robustness:

E{U(θ0;F ,G )} = 0 if either F = F0 or G = G0.

12 / 35



Efficient influence curve and double robustness

Efficient influence curve:

ϕ(O; θ,F ,G ,H) = β · U(θ;F ,G ),

where β = P∗(Q < T ) and

U(θ;F ,G ) =
ν(T )− θ
G (T |Z )

−
∫ ∞
0

E∗{ν(T )− θ | T < t,Z} · F (t|Z )

1− F (t|Z )
· dM̄Q(t;G )

G (t|Z )
.

The semiparametric efficiency bound : E(ϕ2).

Double robustness:

E{U(θ0;F ,G )} = 0 if either F = F0 or G = G0.

12 / 35



Estimation

Let {Oi}ni=1 be an observed random sample of size n; Oi = (Qi ,Ti ,Zi ).

First estimate F and G

Then solve the following equation for θ:

n∑
i=1

Ui (θ; F̂ , Ĝ ) = 0

Closed-form solution:

θ̂dr =

(
n∑

i=1

[
1

Ĝ (Ti |Zi )
−
∫ ∞
0

F̂ (v |Zi )

Ĝ (v |Zi ){1− F̂ (v |Zi )}
dM̄Q,i (v ; Ĝ )

])−1

×

(
n∑

i=1

[
ν(Ti )

Ĝ (Ti |Zi )
−
∫ ∞
0

∫ v

0
ν(t)dF̂ (t|Zi )

Ĝ (v |Zi ){1− F̂ (v |Zi )}
dM̄Q,i (v ; Ĝ )

])
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Ĝ (Ti |Zi )
−
∫ ∞
0

F̂ (v |Zi )
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Ĝ (v |Zi ){1− F̂ (v |Zi )}
dM̄Q,i (v ; Ĝ )
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Model double robustness under asymptotic linearity
Suppose

F̂ and Ĝ uniformly converge to F> and G>, respectively;

F̂ and Ĝ are asymptotically linear.

If either F> = F0 or G> = G0, then

√
n(θ̂dr − θ0)

d→ N(0, σ2).

Furthermore, when both F> = F0 and G> = G0,

θ̂dr acheives the semiparametric efficiency bound;

σ2 can be consistently estimated by σ̂2, where

σ̂2 = β̂2 · 1

n

n∑
i=1

U2
i (θ̂dr , F̂ , Ĝ ), β̂ =

{
n−1

n∑
i=1

1/Ĝ (Ti |Zi )

}−1
.
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Rate double robustness with cross-fitting

K -fold cross-fitting

1: Split the data into K folds of (almost) equal size with
the index sets I1, ..., IK .

2: for k = 1 to K do
3: Estimate F and G with the out-of-k-fold data

=⇒ F̂ (−k) and Ĝ (−k)

4: end for
5: Obtain θ̂cf by solving

K∑
k=1

∑
i∈Ik

Ui{θ, F̂ (−k), Ĝ (−k)} = 0.
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Rate double robustness with cross-fitting

Out-of-sample cross integral product:

D†(F̂ , Ĝ ;F0,G0) := E
(
E†
[∣∣∣∣∫ τ2

τ1

{
a(t,Z†; F̂ )− a(t,Z†;F0)

}
·Y†(t) d

{
1

Ĝ (t|Z†)
− 1

G0(t|Z†)

}∣∣∣∣∣
])

,

where

a(t,Z ;F ) =

∫ t
0 {ν(u)− θ}dF (u|Z )

1− F (t|Z )
,

Y†(t) = 1(Q† ≤ t < T†).
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Rate double robustness
Suppose

F̂ and Ĝ are uniformly consistent;
D†(F̂ , Ĝ ;F0,G0) = o(n−1/2).

We have√
n(θ̂cf − θ0)

d→ N(0, σ2), where σ2 = E(ϕ2);
θ̂cf achieves the semiparametric efficiency bound;
σ2 can be consistently estimated by σ̂2cf , where

σ̂2cf = β̂2cf ·
1

n

K∑
k=1

∑
i∈Ik

U2
i {θ̂cf , F̂ (−k), Ĝ (−k)},

β̂cf =

1

n

K∑
k=1

∑
i∈Ik

1

Ĝ (−k)(Ti |Zi )


−1

.

Nonparametric methods can be used to estimate F and G !
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Extensions to handle right censoring
C : censoring time; X := min(T ,C ); ∆ := 1(T < C )
Sc(t) := P(C > t), SD(t) := P(D > t), where D = C − Q
Assume noninformative censoring.

Two scenarios:

Censoring can happen before truncation
I P∗(C < Q) > 0; subjects with Q < X are included; C ⊥⊥ (Q,T ,Z ) in the full data.

Uc1(θ;Fx ,G ,Sc) =
∆{ν(X )− θ}
Sc(X )G (X |Z )

−
∫ ∞
0

∫ t

0
∆{ν(x)− θ}/Sc(x)dFx(x |Z )

1− F (t|Z )
· dM̃Q(t;G )

G (t|Z )
.

Censoring always after truncation
I P∗(Q < C ) = 1; subjects with Q < T are included; D ⊥⊥ (Q,T ,Z ) in the onbserved data.

Uc2(θ;F ,G ,SD) =
∆

SD(X − Q)

[
ν(X )− θ
G (X |Z )

−
∫ ∞
0

∫ t

0
{ν(u)− θ}dF (u|z)

1− F (t|Z )
· dM̃Q(t;G )

G (t|Z )

]
.

18 / 35



Simulation
500 simulated data sets each with sample size 1000.

Truncation rate: 29.5%; θ0 = P∗(T > 3) = 0.576.
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Application: CNS lymphoma data

Data from a study on central nervous system (CNS) lymphoma (Wang et al., 2015)

[Publicly available in the supplement of Vakulenko-Lagun et al. (2022)]

CR: complete response.[Figure from
Vakulenko-Lagun et al., (2022)]

→ Restrict to the 98 patients that were relapsed, for
which the time is recorded.

Quantity of interest: overall survival.
I T - time to death
I Q - time to relapse

Include two binary treatment variables:
I Chemotherapy
I Radiation therapy
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Application: CNS lymphoma data
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Figure: Estimates of the overall survival for the CNS lymphoma data.
21 / 35



Application: HAAS data

Quantity of interest: Cognitive impairment-free survival on the age scale.

Covariates:
I Education (years)
I APOE positive (yes/no)
I Mid-life alcohol consumption (light/heavy)
I Mid-life cigarette consumption (yes/no)
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Application: HAAS data
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Discussion

We derived the efficient influence curve for the mean of an arbitrarily transformed survival
time and construct doubly robust estimators.

Extension: for parameter θ that can be identified from an unbiased full data estimating
function u∗(T ,Z ; θ). We consider the following AIPW estimating function for left
truncation:

V (θ;F ,G ) =
u∗(T ,Z ; θ)

G (T |Z )
−
∫ ∞
0

E∗{u∗(T ,Z ; θ) | T < t,Z} · F (t|Z )

1− F (t|Z )
· dM̄Q(t;G )

G (t|Z )
.

ArXiv preprint: arXiv:2208.06836

R package: truncAIPW

Code: https://github.com/wangyuyao98/left trunc DR
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Assumptions
f , g , h: the densities of T |Z , Q|Z and Z , respectively.

Assumption 1 (Conditional quasi-independence)

The observed data density for (Q,T ,Z ) satisfies

pQ,T ,Z (q, t, z) =

{
f (t|z)g(q|z)h(z)/β, if t > q,
0, otherwise,

where β = P∗(Q < T ) =
∫
1(q < t)f (t|z)g(q|z)h(z) dt dq dz.

Assumption 2 (Positivity)

G (T |Z ) > 0 a.s.

Assumption 3 (Overlap)

There exists 0 < τ1 < τ2 <∞ such that T ≥ τ1 a.s., Q ≤ τ2 a.s.; also G (τ1|Z ) ≥ δ1 a.s. and
F (τ2|Z ) ≤ 1− δ2 a.s. for some constants δ1 > 0 and δ2 > 0.
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Inverse probability weighting (IPW) identification
Under Assumptions 1 and 2,

θ = E
{

ν(T )

G (T |Z )

}/
E
{

1

G (T |Z )

}
.

Let α be the reverse time hazard function of Q given Z in the full data:

α(q|z) := lim
h→0+

P∗ (q − h < Q ≤ q|Q ≤ q,Z = z)

h

= lim
h→0+

P∗ (q − h < Q ≤ q|Z = z)

h P∗ (Q ≤ q|Z = z)
=
∂G (q|z)/∂q

G (q|z)
.

=⇒ G (q|z) = exp{−
∫∞
q α(t|z)dt}.

α can be identified:

α(q|z) =
pQ|Z (q|z)

P (Q ≤ q < T |Z = z)
.

=⇒ G can be identified from the observed data distribution.
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Reverse time counting process and backwards martingale

For t ≥ 0, let

N̄Q(t) = 1(t ≤ Q < T ),

F̄t = σ {Z ,1(Q < T ),1(s ≤ Q < T ),1(s ≤ T ) : s ≥ t} .

Define

ĀQ(t;G ) =

∫ ∞
t

1(Q ≤ s < T )α(s|Z )ds =

∫ ∞
t

1(Q ≤ s < T )
dG (s|Z )

G (s|Z )
.

Then

M̄Q(t;G ) := N̄Q(t)− ĀQ(t;G )

is a backwards martingale with respect to {F̄t}t≥0 in the observed data.

28 / 35



Two special cases
By setting F̂ ≡ 0 → IPW estimator

θ̂IPW.Q =

{
n∑

i=1

ν(Ti )

Ĝ (Ti |Zi )

}/{
n∑

i=1

1

Ĝ (Ti |Zi )

}
,

By setting Ĝ ≡ 1 → Regression-based estimator

θ̂Reg.T1 =

{
n∑

i=1

1

1− F̂ (Qi |Zi )

}−1
[

n∑
i=1

ν(Ti ){1− F̂ (Qi |Zi )}+
∫ Qi

0
ν(t)dF̂ (t|Zi )

1− F̂ (Qi |Zi )

]
.

I [ν(T ){1− F (Q|Z )}+
∫ Q

0
ν(t)dF (t|Z )] identifies E∗ {ν(T )|Q,Z}.

Another regression based estimator is

θ̂Reg.T2 =

[
n∑

i=1

Ê∗{ν(Ti )|Zi}
1− F̂ (Qi |Zi )

]/{
n∑

i=1

1

1− F̂ (Qi |Zi )

}
,

where Ê∗{ν(Ti )|Zi} =
∫∞
0
ν(t)dF̂ (t|Zi ).
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Some norm notation

For a random function X (t, z) with t ∈ [τ1, τ2] and z ∈ Z, define

‖X (·,Z )‖2sup,2 = E

{
sup

t∈[τ1,τ2]
|X (t,Z )|2

}
,

‖X (·,Z )‖2TV,2 = E
[
TV{X (·,Z )}2

]
,

TV{X (·, z)} = supP
∑J

j=1 |X (xj , z)− X (xj−1, z)| is the total variation of X (·, z) on the interval
[τ1, τ2]

P is the set of all possible partitions τ1 = x0 < x1 < ... < xJ = τ2 of [τ1, τ2]
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Assumptions for F̂ and Ĝ for θ̂dr
Uniform convergence: There exist F> and G> such that∥∥∥F̂ (·|Z )− F>(·|Z )

∥∥∥
sup,2

= o(1),
∥∥∥Ĝ (·|Z )− G>(·|Z )

∥∥∥
sup,2

= o(1).

Asymptotic linearity:

F̂ (t|z)− F>(t|z) =
1

n

n∑
i=1

ξ1(t, z ,Oi ) + R1(t, z),

Ĝ (t|z)− G>(t|z) =
1

n

n∑
i=1

ξ2(t, z ,Oi ) + R2(t, z).

where ‖R1(·,Z )‖sup,2 = o(n−1/2), ‖R2(·,Z )‖sup,2 = o(n−1/2),

and either ‖R1(·,Z )‖TV,2 = o(1) or ‖R2(·,Z )‖TV,2 = o(1).

e.g., it is satisfied when Cox model is used to estimate F and G .
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Norm notation

Let O = {(Qi ,Ti ,Zi ) : i = 1, ...,m} denote the data used to obtain F̂ and Ĝ , and let O† = (Q†,T†,Z†)
be an copy of the data that is independent of, but from the same distribution as O.

‖F̂ − F0‖2†,sup,2 := E

E†

{ sup
t∈[τ1,τ2]

∣∣∣F̂ (t|Z†)− F0(t|Z†)
∣∣∣}2
 ,

‖Ĝ − G0‖2†,sup,2 := E

E†

{ sup
t∈[τ1,τ2]

∣∣∣Ĝ (t|Z†)− G0(t|Z†)
∣∣∣}2
 .

32 / 35



Assumptions on F̂ and Ĝ for θ̂cf

Uniform Consistency:

‖F̂ − F0‖†,sup,2 = o(1), ‖Ĝ − G0‖†,sup,2 = o(1)

Product rate condition: D†(F̂ , Ĝ ;F0,G0) = o(n−1/2).
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Simulation
The models in red are misspecified.
SD: standard deviation, SE: standard error, CP: coverage probability.

Estimator bias SD SE/boot SE CP/boot CP

dr-Cox1-Cox1 -0.0016 0.021 0.020/0.020 0.948/0.946
dr-Cox1-Cox2 -0.0014 0.020 0.019/0.020 0.930/0.944
dr-Cox2-Cox1 -0.0010 0.020 0.019/0.020 0.938/0.946
dr-Cox2-Cox2 0.0184 0.019 0.018/0.019 0.838/0.836
cf-RF-RF 0.0032 0.021 0.023/0.025 0.966/0.976

IPW.Q-Cox1 -0.0004 0.020 0.018/0.020 0.924/0.944
IPW.Q-Cox2 0.0184 0.018 0.017/0.019 0.814/0.832
IPW.Q-RF -0.0064 0.022 0.019/0.022 0.886/0.956

Reg.T1-Cox1 -0.0008 0.020 - /0.020 - /0.944
Reg.T1-Cox2 0.0183 0.018 - /0.019 - /0.842
Reg.T1-RF -0.0073 0.022 - /0.022 - /0.934

Reg.T2-Cox1 -0.0010 0.020 - /0.020 - /0.942
Reg.T2-Cox2 0.0181 0.018 - /0.019 - /0.844
Reg.T2-RF -0.0070 0.022 - /0.022 - /0.940

PL 0.0193 0.018 - /0.018 - /0.824
naive 0.1389 0.014 0.014/0.014 0.000/0.000
full data -0.0007 0.013 0.013/0.013 0.956/0.944
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CNS lymphoma data
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Figure: Estimates of the overall survival for the CNS lymphoma data with their 95% bootstrap confidence
intervals.
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