Doubly Robust Estimation under Covariate-induced Dependent Left Truncation

Yuyao Wang

Department of Mathematics, University of California San Diego yuw079@ucsd.edu

Joint work with:

Andrew Ying, Google Ronghui (Lily) Xu, University of California San Diego

Left truncation and selection bias

- Quantity of interest: time to event (*T*)
- In prevelant cohort studes:
 - ▶ Often only subjects with time to events greater than the enrollment times (Q) are included in the data
 - Subjects with early event times tend not to be captured

Example: CNS lymphoma data

 Data from a study on central nervous system (CNS) lymphoma (Wang et al., 2015)
 [Publicly available in the supplement of Vakulenko-Lagun et al. (2022)]

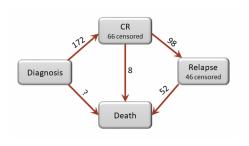
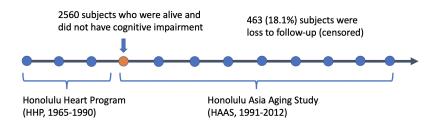


Figure from Vakulenko-Lagun et al., (2022) CR: complete response.

 \rightarrow Restrict to the 98 patients that were relapsed, for which the time is recorded.

- Quantity of interest: overall survival
- T time to death
- For the original data set with 172 patients
 - Q time to CR
- For the restricted data set with 98 patients
 - Q time to relapse

Example: HAAS data



- Quantity of interest:
 Cognitive impairment-free survival on the age scale.
- T age to moderate cognitive impairment or death
- Q age at entry of HAAS

\rightarrow Selection bias

Under the random left truncation assumption

- Likelihood-based approaches (Woodroofe, 1985; Wang et al., 1986; Wang, 1989, 1991; Qin et al. 2011)
- Random truncation assumption can be weakened to quasi-independence assumption (Tsai, 1990)
- ! The quasi-independence assumption may be violated.
 - CNS lymohoma data:
 - ▶ It is plausible that time to death and time to relapse are dependent (Vakulenko-Lagun et al., 2022).
 - HAAS data:
 - Violation of quasi-independence is detected by conditional Kendall's tau test (Tsai, 1990);
 - ► tau = 0.0426 with p-value 0.0014.

When the left truncation time and the event time are dependent:

- Copula models (Chaieb et al., 2006; Emura et al., 2011; Emura & Wang, 2012)
- Structural transformation models (Efron & Petrosian, 1994; Chiou et al., 2019)
- ! Depend on strong model assumptions

When the left truncation time and the event time are dependent:

- Copula models (Chaieb et al., 2006; Emura et al., 2011; Emura & Wang, 2012)
- Structural transformation models (Efron & Petrosian, 1994; Chiou et al., 2019)
- ! Depend on strong model assumptions
- Incorporate left truncation time as a covariate in the event time model (Gail et al., 2009; Mackenzie, 2012; Cheng & Wang 2015).
 - e.g., Entry-age adjusted age-scale model (Gail et al., 2009)
- ! Biologically unjustified; depend on model assumptions.

When the left truncation time and the event time are dependent:

- Copula models (Chaieb et al., 2006; Emura et al., 2011; Emura & Wang, 2012)
- Structural transformation models (Efron & Petrosian, 1994; Chiou et al., 2019)
- ! Depend on strong model assumptions
- Incorporate left truncation time as a covariate in the event time model (Gail et al., 2009; Mackenzie, 2012; Cheng & Wang 2015).
 - e.g., Entry-age adjusted age-scale model (Gail et al., 2009)
- ! Biologically unjustified; depend on model assumptions.
- ! Do not use covariate information.

When the dependence is captured by measured covariates:

In regression settings:

Cox model with risk set adjustment

For marginal survival probabilities:

- Inverse probability weighting (IPW) estimators (Vakulenko-Lagun et al., 2022).
- ! Sensitive to misspecification of the truncation model; inefficient.

When the dependence is captured by measured covariates:

In regression settings:

Cox model with risk set adjustment

For marginal survival probabilities:

- Inverse probability weighting (IPW) estimators (Vakulenko-Lagun et al., 2022).
- ! Sensitive to misspecification of the truncation model; inefficient.

Motivate us to seek estimators that

- Have more protect against model misspecification;
- More efficient;
- Allow us to incorporate nonparametric methods (which are known to have slower than root-n convergence) to obtain root-n consistent estimators.

Our contributions

- Derive the efficient influence curve (EIC) for the expectation of an arbitrarily transformed survival time.
- Construct EIC-based estimators that are shown to have favorable properties:
 - Model double robustness
 - ► Rate double robustness
 - Semiparametric efficiency
- Provide technical conditions for the asymptotic properties that appear to not have been carefully examined in the literature for time-to-event data.
- Our work represents the first attempt to construct doubly robust estimators in the presence of left truncation.
 - Does NOT fall under the established framework of coarsened data where doubly robust approaches are developed.

Notation and estimand

- Q left truncation time; T event time; Z covariates
- Full data if there were no left truncation
- We observe O = (Q, T, Z) only if Q < T
- F, G, H: the full data CDF's of T|Z, Q|Z and Z, respectively.
- superscript *: quantities related to the full data distribution e.g., P*, E*, p*, P*
- without *: quantities related to the observed data distribution e.g., \mathbb{P} , \mathbb{E} , p, P

Notation and estimand

- Q left truncation time; T event time; Z covariates
- Full data if there were no left truncation
- We observe O = (Q, T, Z) only if Q < T
- F, G, H: the full data CDF's of T|Z, Q|Z and Z, respectively.
- superscript *: quantities related to the full data distribution e.g., P*, E*, p*, P*
- without *: quantities related to the observed data distribution e.g., P, E, p, P
- Estimand: $\theta := \mathbb{E}^* \{ \nu(T) \}$, where ν is a given function.
 - e.g., when $\nu(t) = \mathbb{1}(t > t_0)$, $\theta = \mathbb{P}^*(T > t_0)$ (survival probability).
 - e.g., when $\nu(t) = \min(t, t_0)$, $\theta = \mathbb{E}^*\{\min(T, t_0)\}$ (RMST).

- Conditional quasi-independence:
 Q and T are "independent" given Z on the observed region {t > q}.
- Positivity: $\mathbb{P}^*(Q < T|Z) > 0$ a.s.
- Overlap assumption for F and G: Stronger than positivity.

EIC and double robustness

EIC:

$$\varphi(O; \theta, F, G, H) = \beta \cdot U(\theta; F, G),$$

where

$$U(\theta; F, G) = \frac{\nu(T) - \theta}{G(T|Z)} - \int_0^\infty \mathbb{E}^* \{ \nu(T) - \theta \mid T < v, Z \} \cdot \frac{F(v|Z)}{1 - F(v|Z)} \cdot \frac{d\bar{M}_Q(v; G)}{G(v|Z)},$$

and recall that $\beta = \mathbb{P}^*(Q < T)$.

• The semiparametric efficiency bound : $\mathbb{E}(\varphi^2)$.

EIC and double robustness

EIC:

$$\varphi(O; \theta, F, G, H) = \beta \cdot U(\theta; F, G),$$

where

$$U(\theta; F, G) = \frac{\nu(T) - \theta}{G(T|Z)} - \int_0^\infty \mathbb{E}^* \{ \nu(T) - \theta \mid T < \nu, Z \} \cdot \frac{F(\nu|Z)}{1 - F(\nu|Z)} \cdot \frac{d\bar{M}_Q(\nu; G)}{G(\nu|Z)},$$

and recall that $\beta = \mathbb{P}^*(Q < T)$.

ullet The semiparametric efficiency bound : $\mathbb{E}(\varphi^2)$.

Double robustness:

$$\mathbb{E}\{U(\theta_0; F, G)\} = 0$$
 if either $F = F_0$ or $G = G_0$

Estimation

Let $\{O_i\}_{i=1}^n$ be an observed random sample of size n; $O_i = (Q_i, T_i, Z_i)$.

- First estimate F and G
- Then solve the following equation for θ :

$$\sum_{i=1}^n U_i(\theta; \hat{F}, \hat{G}) = 0$$

Estimation

Let $\{O_i\}_{i=1}^n$ be an observed random sample of size n; $O_i = (Q_i, T_i, Z_i)$.

- First estimate F and G
- Then solve the following equation for θ :

$$\sum_{i=1}^n U_i(\theta; \hat{F}, \hat{G}) = 0$$

Closed-form solution:

$$\hat{\theta}_{dr} = \left(\sum_{i=1}^{n} \left[\frac{1}{\hat{G}(T_{i}|Z_{i})} - \int_{0}^{\infty} \frac{\hat{F}(v|Z_{i})}{\hat{G}(v|Z_{i})\{1 - \hat{F}(v|Z_{i})\}} d\bar{M}_{Q,i}(v;\hat{G}) \right] \right)^{-1} \times \left(\sum_{i=1}^{n} \left[\frac{\nu(T_{i})}{\hat{G}(T_{i}|Z_{i})} - \int_{0}^{\infty} \frac{\int_{0}^{v} \nu(t) d\hat{F}(t|Z_{i})}{\hat{G}(v|Z_{i})\{1 - \hat{F}(v|Z_{i})\}} d\bar{M}_{Q,i}(v;\hat{G}) \right] \right)$$

Model double robustness under asymptotic linearity

Suppose

- \hat{F} and \hat{G} uniformly converge to F^* and G^* , respectively;
- ullet \hat{F} and \hat{G} are asymptotically linear.

If either $F^* = F_0$ or $G^* = G_0$, we have:

•
$$\sqrt{n}(\hat{\theta}_{dr} - \theta_0) \stackrel{d}{\rightarrow} N(0, \sigma^2)$$
.

Furthermore, when both $F^* = F_0$ and $G^* = G_0$,

- $\hat{\theta}_{dr}$ acheives the semiparametric efficiency bound;
- σ^2 can be consistently estimated by $\hat{\sigma}^2$, where

$$\hat{\sigma}^2 = \hat{\beta}^2 \cdot \frac{1}{n} \sum_{i=1}^n U_i^2(\hat{\theta}_{dr}, \hat{F}, \hat{G}), \quad \hat{\beta} = \left\{ n^{-1} \sum_{i=1}^n 1/\hat{G}(T_i|Z_i) \right\}^{-1}.$$

Rate double robustness with cross-fitting

K-fold cross-fitting:

$$\sum_{k=1}^K \sum_{i\in\mathcal{I}_k} U_i\{\theta, \hat{F}^{(-k)}, \hat{G}^{(-k)}\} = 0 \quad o \quad \hat{ heta}_{cf}$$

Out-of-sample cross integral product:

$$\begin{split} \mathcal{D}_{\dagger}(\hat{F},\hat{G};F_{0},G_{0}) := \mathbb{E}\left(\mathbb{E}_{\dagger}\left[\left|\int_{\tau_{1}}^{\tau_{2}}\left\{a(v,Z_{\dagger};\hat{F}) - a(v,Z_{\dagger};F_{0})\right\}\right.\right.\right.\\ \left.\cdot Y_{\dagger}(v) \; d\left\{\frac{1}{\hat{G}(v|Z_{\dagger})} - \frac{1}{G_{0}(v|Z_{\dagger})}\right\}\right|\right]\right), \end{split}$$

where
$$a(v, Z; F) = \int_0^v \{\nu(t) - \theta\} dF(t|Z) / \{1 - F(v|Z)\} Y_{\dagger}(v) = \mathbb{1}(Q_{\dagger} \le v < T_{\dagger}).$$

Rate double robustness

Suppose

- \hat{F} and \hat{G} are uniformly consistent;
- $\mathcal{D}_{\dagger}(\hat{F}, \hat{G}; F_0, G_0) = o(n^{-1/2}).$

We have

- $\sqrt{n}(\hat{\theta}_{cf} \theta_0) \stackrel{d}{\to} N(0, \sigma^2)$, where $\sigma^2 = \mathbb{E}(\varphi^2)$;
- $oldsymbol{\hat{ heta}}_{cf}$ achieves the semiparametric efficiency bound;
- σ^2 can be consistently estimated by $\hat{\sigma}_{cf}^2$, where

$$\hat{\sigma}_{cf}^{2} = \hat{\beta}_{cf}^{2} \cdot \frac{1}{n} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} U_{i}^{2} \{ \hat{\theta}_{cf}, \hat{F}^{(-k)}, \hat{G}^{(-k)} \},$$

$$\hat{\beta}_{cf} = \left\{ \frac{1}{n} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} \frac{1}{\hat{G}^{(-k)}(T_{i}|Z_{i})} \right\}^{-1}.$$

Nonparametric methods can be used to estimate F and G!

Application: CNS lymphoma data

 Data from a study on central nervous system (CNS) lymphoma (Wang et al., 2015)
 [Publicly available in the supplement of Vakulenko-Lagun et al. (2022)]

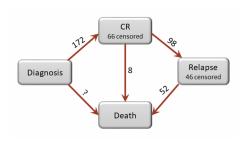


Figure from Vakulenko-Lagun et al., (2022) CR: complete response.

 \rightarrow Restrict to the 98 patients that were relapsed, for which the time is recorded.

- Quantity of interest: overall survival.
- It is plausible that time to death and time to relapse are dependent, and treatment is strongly associated with both.
- Binary treatment variables:
 - chemotherapy
 - radiation therapy

Application: CNS lymphoma data

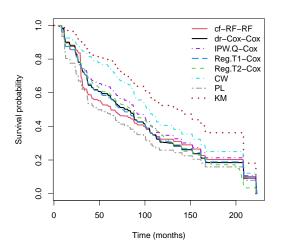
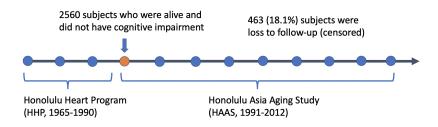


Figure: Estimates of the overall survival for the CNS lymphoma data.

Application: HAAS data



- Quantity of interest:
 Cognitive impairment-free survival on the age scale.
- Dependence detected: tau = 0.0426 with p-value 0.0014.
- Covariates:
 - education (years)
 - APOE positive (yes/no)
 - mid-life alcohol consumption (light/heavy)
 - mid-life cigarette consumption (yes/no)

Application: HAAS data

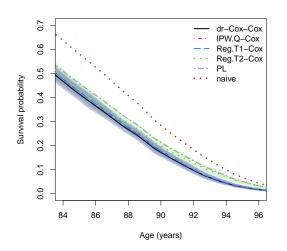


Figure: Estimated cognitive impairment-free survival and their 95% bootstrap confidence intervals (shaded, except for PL and naive) for the HAAS data.

Summary and discussion

- We derived the EIC for the mean of an arbitrarily transformed survival time and construct doubly robust estimators.
- Future direction:
 - Extension to also handle informative censoring.
 - Leverage domain knowledge to avoid the conditional quasi-independence assumption using the "proximal identification framework" (Tchetgen Tchetgen et al., 2020)
- ArXiv preprint: arXiv:2208.06836
- Code: https://github.com/wangyuyao98/left_trunc_DR

Questions & Comments?

Appendix

f, g, h: the densities of T|Z, Q|Z and Z, respectively.

Assumption 1 (Conditional quasi-independence)

The observed data density for (Q, T, Z) satisfies

$$p_{Q,T,Z}(q,t,z) = \begin{cases} f(t|z)g(q|z)h(z)/\beta, & \text{if } t > q, \\ 0, & \text{otherwise,} \end{cases}$$

where $\beta = \mathbb{P}^*(Q < T) = \int \mathbb{1}(q < t)f(t|z)g(q|z)h(z)$ dt dq dz.

Assumption 2 (Positivity)

 $\mathbb{P}^*(Q < T|Z) > 0$ a.s.

Assumption 3 (Overlap)

There exists $0 < \tau_1 < \tau_2 < \infty$ such that $T \ge \tau_1$ a.s., $Q \le \tau_2$ a.s.; also $G(\tau_1|Z) \ge \delta_1$ a.s. and $F(\tau_2|Z) \le 1 - \delta_2$ a.s. for some constants $\delta_1 > 0$ and $\delta_2 > 0$.

Assumption 4 (Uniform Convergence)

There exist F^* and G^* such that

$$\|\hat{F}(\cdot|Z) - F^*(\cdot|Z)\|_{\sup 2} = o(1), \quad \|\hat{G}(\cdot|Z) - G^*(\cdot|Z)\|_{\sup 2} = o(1).$$

Assumption 5 (Asymptotic Linearity)

For fixed $(t,z) \in [\tau_1,\tau_2] \times \mathcal{Z}$, $\hat{F}(t|z)$ and $\hat{G}(t|z)$ are regular and asymptotically linear estimators for F(t|z) and G(t|z) with influence functions $\xi_1(t,z,O)$ and $\xi_2(t,z,O)$, respectively. In addition, denote

$$R_1(t,z) = \hat{F}(t|z) - F^*(t|z) - \frac{1}{n} \sum_{i=1}^n \xi_1(t,z,O_i),$$

$$R_2(t,z) = \hat{G}(t|z) - G^*(t|z) - \frac{1}{n} \sum_{i=1}^n \xi_2(t,z,O_i).$$

Suppose $\|R_1(\cdot, Z)\|_{\sup, 2} = o(n^{-1/2})$, $\|R_2(\cdot, Z)\|_{\sup, 2} = o(n^{-1/2})$, and either $\|R_1(\cdot, Z)\|_{TV, 2} = o(1)$ or $\|R_2(\cdot, Z)\|_{TV, 2} = o(1)$.

Inverse probability weighting (IPW) identification

• Under Assumptions 1 and 2,

$$heta = \mathbb{E}\left\{\frac{
u(T)}{G(T|Z)}\right\} / \mathbb{E}\left\{\frac{1}{G(T|Z)}\right\}.$$

• Let α be the *reverse time hazard function* of Q given Z in the full data:

$$\alpha(q|z) := \lim_{h \to 0+} \frac{\mathbb{P}^* (q - h < Q \le q | Q \le q, Z = z)}{h}$$

$$= \lim_{h \to 0+} \frac{\mathbb{P}^* (q - h < Q \le q | Z = z)}{h \, \mathbb{P}^* (Q \le q | Z = z)} = \frac{\partial G(q|z) / \partial q}{G(q|z)}.$$

$$\implies G(q|z) = \exp\{-\int_a^\infty \alpha(t|z) dt\}.$$

• α can be identified:

$$\alpha(q|z) = \frac{p_{Q|Z}(q|z)}{\mathbb{P}(Q < q < T|Z = z)}.$$

 \implies G can be identified from the observed data distribution.

Reverse time counting process and backwards martingale

For $t \geq 0$, let

$$ar{N}_Q(t) = \mathbb{1}(t \leq Q < T), \ ar{\mathcal{F}}_t = \sigma \{ Z, \mathbb{1}(Q < T), \mathbb{1}(s \leq Q < T), \mathbb{1}(s \leq T) : s \geq t \}.$$

Define

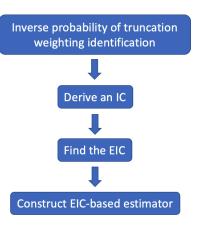
$$\bar{A}_Q(t;G) = \int_t^\infty \mathbb{1}(Q \le s < T)\alpha(s|Z)ds = \int_t^\infty \mathbb{1}(Q \le s < T)\frac{dG(s|Z)}{G(s|Z)}.$$

Then

$$\bar{M}_Q(t;G) := \bar{N}_Q(t) - \bar{A}_Q(t;G)$$

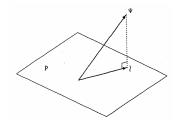
is a backwards martingale with respect to $\{\bar{\mathcal{F}}_t\}_{t\geq 0}$ in the observed data.

Steps for constructing the proposed estimators



$$heta = \mathbb{E}\left\{rac{
u(T)}{G(T|Z)}
ight\} \bigg/ \mathbb{E}\left\{rac{1}{G(T|Z)}
ight\}$$

 $G \leftarrow \text{conditional reverse time hazard}$ \uparrow observed data distribution.



(Figure from Bickel et al., 1993)

 \dot{P} - tangent space; Ψ - IC; $\widetilde{\ell}$ - EIC.

Deriving the EIC

• Derive an influence curve (IC)

$$\left. \frac{\partial}{\partial \epsilon} \theta(P_{\epsilon}) \right|_{\epsilon=0} = \mathbb{E} \left\{ \varphi(O) \mathcal{S}(O) \right\}, \quad \mathcal{S}(O) = \left. \frac{\partial}{\partial \epsilon} \log p_{\epsilon}(O) \right|_{\epsilon=0}$$

ullet Project the IC onto the tangent space o EIC

$$\varphi(O; \theta, F, G, H) = \beta \cdot U(\theta; F, G)$$

where

$$U(\theta; F, G)$$

$$= \frac{\nu(T) - \theta}{G(T|Z)} - \int_0^\infty \mathbb{E}^* \{ \nu(T) - \theta \mid T < v, Z \} \cdot \frac{F(v|Z)}{1 - F(v|Z)} \cdot \frac{d\bar{M}_Q(v; G)}{G(v|Z)}$$

Recall that $\beta = \mathbb{P}^*(Q < T)$

• The semiparametric efficiency bound : $\mathbb{E}(\varphi^2)$.

Two special cases

• By setting $\hat{F} \equiv 0 \rightarrow IPW$ estimator

$$\hat{\theta}_{\mathsf{IPW.Q}} = \left\{ \sum_{i=1}^{n} \frac{\nu(T_i)}{\hat{G}(T_i|Z_i)} \right\} / \left\{ \sum_{i=1}^{n} \frac{1}{\hat{G}(T_i|Z_i)} \right\},$$

ullet By setting $\hat{G}\equiv 1 \ o$ Regression-based estimator

$$egin{aligned} \hat{ heta}_{\mathsf{Reg.T1}} &= \left\{ \sum_{i=1}^n rac{1}{1 - \hat{F}(Q_i|Z_i)}
ight\} \ & \left[\sum_{i=1}^n rac{
u(T_i)\{1 - \hat{F}(Q_i|Z_i)\} + \int_0^{Q_i}
u(t)d\hat{F}(t|Z_i)}{1 - \hat{F}(Q_i|Z_i)}
ight]. \end{aligned}$$

$$\blacktriangleright [\nu(T)\{1-F(Q|Z)\} + \int_0^Q \nu(t)dF(t|Z)] \text{ identifies } \mathbb{E}^* \{\nu(T)|Q,Z\}.$$

• Another regression based estimator is

$$\hat{\theta}_{\mathsf{Reg.T2}} = \left[\sum_{i=1}^n \frac{\hat{\mathbb{E}}^* \{ \nu(T_i) | Z_i \}}{1 - \hat{F}(Q_i | Z_i)} \right] \bigg/ \left\{ \sum_{i=1}^n \frac{1}{1 - \hat{F}(Q_i | Z_i)} \right\},$$

where $\hat{\mathbb{E}}^*\{\nu(T_i)|Z_i\} = \int_0^\infty \nu(t)d\hat{F}(t|Z_i)$.

Some norm notation

For a random function X(t,z) with $t \in [\tau_1, \tau_2]$ and $z \in \mathcal{Z}$, define

$$||X(\cdot, Z)||_{\sup, 2}^{2} = \mathbb{E}\left\{\sup_{t \in [\tau_{1}, \tau_{2}]} |X(t, Z)|^{2}\right\},\$$

$$||X(\cdot, Z)||_{\mathsf{TV}, 2}^{2} = \mathbb{E}\left[\mathsf{TV}\{X(\cdot, Z)\}^{2}\right],\$$

- TV $\{X(\cdot,z)\}=\sup_{\mathcal{P}}\sum_{j=1}^{J}|X(x_j,z)-X(x_{j-1},z)|$ is the total variation of $X(\cdot,z)$ on the interval $[\tau_1,\tau_2]$
- ullet ${\cal P}$ is the set of all possible partitions $au_1 = x_0 < x_1 < ... < x_J = au_2$ of $[au_1, au_2]$

Assumptions for \hat{F} and \hat{G} for $\hat{\theta}_{dr}$

• **Uniform convergence**: There exist F^* and G^* such that

$$\|\hat{F}(\cdot|Z) - F^*(\cdot|Z)\|_{\sup Z} = o(1), \quad \|\hat{G}(\cdot|Z) - G^*(\cdot|Z)\|_{\sup Z} = o(1).$$

Asymptotic linearity:

$$\hat{F}(t|z) - F^*(t|z) = \frac{1}{n} \sum_{i=1}^n \xi_1(t, z, O_i) + R_1(t, z),$$

$$\hat{G}(t|z) - G^*(t|z) = \frac{1}{n} \sum_{i=1}^n \xi_2(t, z, O_i) + R_2(t, z).$$

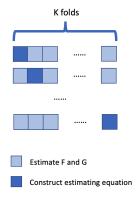
where
$$||R_1(\cdot, Z)||_{\sup, 2} = o(n^{-1/2})$$
, $||R_2(\cdot, Z)||_{\sup, 2} = o(n^{-1/2})$, and either $||R_1(\cdot, Z)||_{TV, 2} = o(1)$ or $||R_2(\cdot, Z)||_{TV, 2} = o(1)$.

ullet e.g., it is satisfied when Cox model is used to estimate F and G.

K-fold cross-fitting

- 1: Split the data into K folds of (almost) equal size with the index sets $\mathcal{I}_1, ..., \mathcal{I}_K$.
- 2: **for** k = 1 to K **do**
- 3: Estimate F and G with the out-of-k-fold data $\implies \hat{F}^{(-k)}$ and $\hat{G}^{(-k)}$
- 4: end for
- 5: Obtain $\hat{\theta}_{cf}$ by solving

$$\sum_{k=1}^K \sum_{i \in \mathcal{I}_k} U_i \{ \theta, \hat{F}^{(-k)}, \hat{G}^{(-k)} \} = 0.$$



Norm notation and cross integral product

Let $\mathcal{O} = \{(Q_i, T_i, Z_i) : i = 1, ..., m\}$ denote the data used to obtain \hat{F} and \hat{G} , and let $O_{\dagger} = (Q_{\dagger}, T_{\dagger}, Z_{\dagger})$ be an copy of the data that is independent of, but from the same distribution as \mathcal{O} .

$$\begin{split} \|\hat{F} - F_0\|_{\dagger, \sup, 2}^2 &:= \mathbb{E}\left(\mathbb{E}_{\dagger}\left[\left\{\sup_{t \in [\tau_1, \tau_2]} \left|\hat{F}(t|\mathbf{Z}_{\dagger}) - F_0(t|\mathbf{Z}_{\dagger})\right|\right\}^2\right]\right), \\ \|\hat{G} - G_0\|_{\dagger, \sup, 2}^2 &:= \mathbb{E}\left(\mathbb{E}_{\dagger}\left[\left\{\sup_{t \in [\tau_1, \tau_2]} \left|\hat{G}(t|\mathbf{Z}_{\dagger}) - G_0(t|\mathbf{Z}_{\dagger})\right|\right\}^2\right]\right). \end{split}$$

Out-of-sample cross integral product:

$$\mathcal{D}_{\dagger}(\hat{F}, \hat{G}; F_0, G_0) := \mathbb{E}\left(\mathbb{E}_{\dagger}\left[\left|\int_{\tau_1}^{\tau_2} \left\{a(v, \mathbf{Z}_{\dagger}; \hat{F}) - a(v, \mathbf{Z}_{\dagger}; F_0)\right\}\right.\right.\right.\right.$$
$$\left. \cdot \frac{\mathsf{Y}_{\dagger}(v) \ d\left\{\frac{1}{\hat{G}(v|\mathbf{Z}_{\dagger})} - \frac{1}{G_0(v|\mathbf{Z}_{\dagger})}\right\}\right|\right]\right),$$

where
$$a(v, Z; F) = \int_0^v \{\nu(t) - \theta\} dF(t|Z)/\{1 - F(v|Z)\}$$

 $Y_{\dagger}(v) = \mathbb{1}(Q_{\dagger} \leq v < T_{\dagger}).$

Assumptions on \hat{F} and \hat{G} for $\hat{\theta}_{cf}$

• Uniform Consistency:

$$\|\hat{F} - F_0\|_{\dagger, \sup, 2} = o(1), \quad \|\hat{G} - G_0\|_{\dagger, \sup, 2} = o(1)$$

• Product rate condition: $\mathcal{D}_{\dagger}(\hat{F}, \hat{G}; F_0, G_0) = o(n^{-1/2})$.

Extensions to handle right censoring

C: censoring time; $X := \min(T, C)$; $\Delta := \mathbb{1}(T < C)$ $S_c(t) := \mathbb{P}(C > t)$, $S_D(t) := \mathbb{P}(D > t)$, where D = C - QAssume noninformative censoring.

Two scenarios:

- Censoring can happen before truncation
 - ▶ $\mathbb{P}^*(C < Q) > 0$, subjects with Q < X are included.

$$\begin{split} &U_{c1}(\theta; F_x, G, S_c) \\ &= \frac{\Delta \{\nu(X) - \theta\}}{S_c(X)G(X|Z)} - \int_0^\infty \frac{\int_0^v \Delta \{\nu(x) - \theta\} / S_c(x) dF_x(x|Z)}{1 - F(v|Z)} \cdot \frac{d\tilde{M}_Q(v; G)}{G(v|Z)}. \end{split}$$

- Censoring always after truncation
 - ▶ $\mathbb{P}^*(Q < C) = 1$, subjects with Q < T are included.

$$U_{c2}(\theta; F, G, S_D)$$

$$= \frac{\Delta}{S_D(X-Q)} \left[\frac{\nu(X) - \theta}{G(X|Z)} - \int_0^\infty \frac{\int_0^v \{\nu(t) - \theta\} dF(t|z)}{1 - F(v|Z)} \cdot \frac{d\tilde{M}_Q(v;G)}{G(v|Z)} \right].$$

Simulation results

500 simulated data sets each with sample size 1000.

Truncation rate: 29.5%; $\theta_0 = P^*(T > 3) = 0.576$.

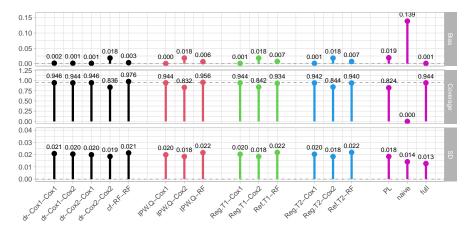


Figure: Absolute bias, coverage rate of 95% confidence intervals with bootstrap standard errors, and empirical standard deviation for different estimators.

Simulation

The models in red are misspecified.

SD: standard deviation, SE: standard error, CP: coverage probability.

Estimator	bias	SD	SE/boot SE	CP/boot CP
dr-Cox1-Cox1	-0.0016	0.021	0.020/0.020	0.948/0.946
dr-Cox1-Cox2	-0.0014	0.020	0.019/0.020	0.930/0.944
dr-Cox2-Cox1	-0.0010	0.020	0.019/0.020	0.938/0.946
dr-Cox2-Cox2	0.0184	0.019	0.018/0.019	0.838/0.836
cf-RF-RF	0.0032	0.021	0.023/0.025	0.966/0.976
IPW.Q-Cox1	-0.0004	0.020	0.018/0.020	0.924/0.944
IPW.Q-Cox2	0.0184	0.018	0.017/0.019	0.814/0.832
IPW.Q-RF	-0.0064	0.022	0.019/0.022	0.886/0.956
Reg.T1-Cox1	-0.0008	0.020	- /0.020	- /0.944
Reg.T1-Cox2	0.0183	0.018	- /0.019	- /0.842
Reg.T1-RF	-0.0073	0.022	- /0.022	- /0.934
Reg.T2-Cox1	-0.0010	0.020	- /0.020	- /0.942
Reg.T2-Cox2	0.0181	0.018	- /0.019	- /0.844
Reg.T2-RF	-0.0070	0.022	- /0.022	- /0.940
PL	0.0193	0.018	- /0.018	- /0.824
naive	0.1389	0.014	0.014/0.014	0.000/0.000
full data	-0.0007	0.013	0.013/0.013	0.956/0.944

CNS lymphoma data

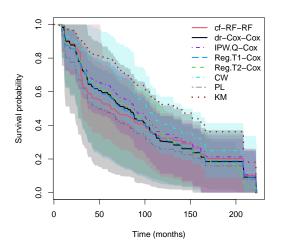


Figure: Estimates of the overall survival for the CNS lymphoma data with their 95% bootstrap confidence intervals.