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Left truncation and selection bias

e Quantity of interest: time to event (T)
@ In prevelant cohort studes:

» Often only subjects with time to events greater than the enrollment
times (@) are included in the data
» Subjects with early event times tend not to be captured
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Example: CNS lymphoma data

e Data from a study on central nervous system (CNS) lymphoma
(Wang et al., 2015)
[Publicly available in the supplement of Vakulenko-Lagun et al. (2022)]

CR
66 censored

@ T - time to death
8 Relapse
46 censored

@ For the original data set with 172
patients

» @ -timeto CR

@ Quantity of interest:
overall survival

Diagnosis

@ For the restricted data set with 98

Figure from Vakulenko-Lagun et al., (2022) .
patients

CR: complete response.
» @ - time to relapse

— Restrict to the 98 patients that were
relapsed, for which the time is recorded.
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Example: HAAS data

2.560 subjects wh? YVEI:E all\{e and 463 (18.1%) subjects were
did not have cognitive impairment

!
——0—0—0—0—0—0—0—0—0—0—
\ J \ J

loss to follow-up (censored)

T Y
Honolulu Heart Program Honolulu Asia Aging Study
(HHP, 1965-1990) (HAAS, 1991-2012)

@ Quantity of interest:
Cognitive impairment-free survival on the age scale.

@ T - age to moderate cognitive impairment or death
@ @ - age at entry of HAAS

— Selection bias
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Literature

Under the random left truncation assumption

@ Likelihood-based approaches (Woodroofe, 1985; Wang et al., 1986; Wang,

1989, 1991; Qin et al. 2011)

@ Random truncation assumption can be weakened to
quasi-independence assumption (Tsai, 1990)

I' The quasi-independence assumption may be violated.

@ CNS lymohoma data:

» It is plausible that time to death and time to relapse are dependent
(Vakulenko-Lagun et al., 2022).

@ HAAS data:

» Violation of quasi-independence is detected by conditional Kendall's
tau test (Tsai, 1990);
» tau = 0.0426 with p-value 0.0014.
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Literature

When the left truncation time and the event time are dependent:
) Copula models (Chaieb et al., 2006; Emura et al., 2011; Emura & Wang, 2012)

@ Structural transformation models (Efron & Petrosian, 1994; Chiou et al.,
2019)

I Depend on strong model assumptions
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Literature

When the left truncation time and the event time are dependent:
) Copula models (Chaieb et al., 2006; Emura et al., 2011; Emura & Wang, 2012)

@ Structural transformation models (Efron & Petrosian, 1994; Chiou et al.,
2019)

I Depend on strong model assumptions

@ Incorporate left truncation time as a covariate in the event time
model (Gail et al., 2009; Mackenzie, 2012; Cheng & Wang 2015).

> e.g., Entry-age adjusted age-scale model (Gail et al., 2009)

I Biologically unjustified; depend on model assumptions.
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Literature

When the left truncation time and the event time are dependent:
) Copula models (Chaieb et al., 2006; Emura et al., 2011; Emura & Wang, 2012)

@ Structural transformation models (Efron & Petrosian, 1994; Chiou et al.,
2019)

I Depend on strong model assumptions
@ Incorporate left truncation time as a covariate in the event time

model (Gail et al., 2009; Mackenzie, 2012; Cheng & Wang 2015).
> e.g., Entry-age adjusted age-scale model (Gail et al., 2009)

I Biologically unjustified; depend on model assumptions.

I Do not use covariate information.
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Literature
When the dependence is captured by measured covariates:
In regression settings:

@ Cox model with risk set adjustment

For marginal survival probabilities:

@ Inverse probability weighting (IPW) estimators (Vakulenko-Lagun et al.,
2022).

I Sensitive to misspecification of the truncation model; inefficient.
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Literature
When the dependence is captured by measured covariates:

In regression settings:

@ Cox model with risk set adjustment

For marginal survival probabilities:
@ Inverse probability weighting (IPW) estimators (Vakulenko-Lagun et al.,
2022).

I Sensitive to misspecification of the truncation model; inefficient.

Motivate us to seek estimators that
@ Have more protect against model misspecification;
@ More efficient;
@ Allow us to incorporate nonparametric methods (which are known to
have slower than root-n convergence) to obtain root-n consistent

estimators.
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Our contributions

o Derive the efficient influence curve (EIC) for the expectation of an
arbitrarily transformed survival time.
@ Construct EIC-based estimators that are shown to have favorable
properties:
» Model double robustness
» Rate double robustness
» Semiparametric efficiency
@ Provide technical conditions for the asymptotic properties that appear
to not have been carefully examined in the literature for time-to-event
data.
@ Our work represents the first attempt to construct doubly robust
estimators in the presence of left truncation.
» Does NOT fall under the established framework of coarsened data
where doubly robust approaches are developed.
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Notation and estimand

@ @ - left truncation time; T - event time; Z - covariates
@ Full data - if there were no left truncation
@ Weobserve O = (Q, T, Z)onlyif Q< T

F, G, H: the full data CDF's of T|Z, Q|Z and Z, respectively.
superscript *: quantities related to the full data distribution
e.g., P* E*, p*, P*

@ without *: quantities related to the observed data distribution
eg, P E p P
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Notation and estimand

@ @ - left truncation time; T - event time; Z - covariates
@ Full data - if there were no left truncation
@ Weobserve O = (Q, T, Z)onlyif Q< T

e F, G, H: the full data CDF's of T|Z, Q|Z and Z, respectively.

@ superscript *: quantities related to the full data distribution
e.g., P* E*, p*, P*

@ without *: quantities related to the observed data distribution
eg, P E p P

e Estimand: 6 := E*{v(T)}, where v is a given function.

> e.g., when v(t) = 1(t > ty), 6 =P*(T > ty) (survival probability).
> e.g., when v(t) = min(t, tp), 0 = E*{min(T, to)} (RMST).
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Assumptions

e Conditional quasi-independence:
Q and T are “independent” given Z on the observed region {t > q}.

e Positivity: P*(Q < T|Z) >0 ass.

@ Overlap assumption for F and G: Stronger than positivity.
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EIC and double robustness

e EIC:
4)0(0:97F367H):ﬁu(01,:3 G)a
where
U(o; F, G)
_y(T)—90 F(v|Z) dMg(v; G)

=T, B 01T <2y gl S,

and recall that 8 =P*(Q < T).
e The semiparametric efficiency bound : E(¢?).
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EIC and double robustness

e EIC:
¢(0;0,F,G,H)=p3-U(9; F,G),

where
U(6; F, G)

_v(n)—-06 [~ ST — , - _F(v[2) .dl\7IQ(v;G)
=T, B 01T <2y gl S,

and recall that 8 =P*(Q < T).
e The semiparametric efficiency bound : E(¢?).

Double robustness:
E{U(6o; F,G)} =0 if either F = Fy or G = Gy
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Estimation
Let {O;}7_; be an observed random sample of size n; O; = (Q;, T;, Z;).

@ First estimate F and G

@ Then solve the following equation for 8:

> Ui F,G) =0

i=1
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Estimation

Let {O;}7_; be an observed random sample of size n;

@ First estimate F and G

@ Then solve the following equation for 8:

> Ui F,G) =0

i=1

@ Closed-form solution:

n

by = <Z

i=1

O = (Qi, Ti, Zi).

£ -1
R E(v|Z) e & D
CA"(Ti|Zi) /0 é(v|Z-){1 — A(V|Z.)} Q.i(vi G)

dF(t|Z)
8 ,. G V\Z {1-

F(v|Z:)}

MQ’,'(V; é)

)
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Model double robustness under asymptotic linearity

Suppose

o Fand G uniformly converge to F* and G*, respectively;

o Fand G are asymptotically linear.

If either F* = Fy or G* = Gy, we have:
o (B — 00) 5 N(O, 02).

Furthermore, when both F* = Fy and G* = Gy,
° GAd, acheives the semiparametric efficiency bound;

@ 02 can be consistently estimated by 2, where

n n -1
PN | A A A A ~
52 = 2.,§ 2 = —1§ | Z;
oc=p . U0, F,G), p {n i_ll/G(T,]Z,)} .

i=1
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Rate double robustness with cross-fitting

K-fold cross-fitting:

K
SO U0, ECR G0 0 o iy

k=1i€Zy

Out-of-sample cross integral product:

Di(F, G; Fo, Go) :=E (ET [

/T2 {a(v, Zs; I:_) —a(v, Z;; Fo)}

T1

1 1
.YT(V) d { G(V\ZT) B GO(V‘ZT)}H> ,

where a(v, Z; F) = fov{y(t) —0}dF(t|Z)/{1 - F(v|2)}
Yi(v) = 1(Q <v < Ty).
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Rate double robustness
Suppose

o F and G are uniformly consistent;
o Di(F, G; Fo, Go) = o(n1/2).

We have
o /n(fer — 0o) < N(0,02), where 02 = E(¢?);

@ 0. achieves the semiparametric efficiency bound;
@ 02 can be consistently estimated by 6%, where

6% = B2 ZZU {Bce, F1, 603,

k 1 IGIk

P S) Sp .

M, 6 k’ (TilZ)

-1

Nonparametric methods can be used to estimate F and G!
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Application: CNS lymphoma data

e Data from a study on central nervous system (CNS) lymphoma
(Wang et al., 2015)
[Publicly available in the supplement of Vakulenko-Lagun et al. (2022)]

— @ Quantity of interest:
CR .
overall survival.

66 censored

@ It is plausible that time to death
8 Lalahte, I and time to relapse are dependent,
and treatment is strongly
associated with both.

Diagnosis

@ Binary treatment variables:

» chemotherapy

Figure from Vakulenko-Lagun et al., (2022) > radiation therapy

CR: complete response.

— Restrict to the 98 patients that were
relapsed, for which the time is recorded.
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Application: CNS lymphoma data
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Figure: Estimates of the overall survival for the CNS lymphoma data.
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Application: HAAS data

2560 subjects who were alive and
did not have cognitive impairment

!
——0—0—0—0—0—0—0—0—0—0—
\ J \ J

463 (18.1%) subjects were
loss to follow-up (censored)

T Y
Honolulu Heart Program Honolulu Asia Aging Study
(HHP, 1965-1990) (HAAS, 1991-2012)

@ Quantity of interest:
Cognitive impairment-free survival on the age scale.

@ Dependence detected: tau = 0.0426 with p-value 0.0014.
o Covariates:

> education (years)

APOE positive (yes/no)

» mid-life alcohol consumption (light/heavy)
» mid-life cigarette consumption (yes/no)

\4
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Application: HAAS data

0.7
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Figure: Estimated cognitive impairment-free survival and their 95% bootstrap

confidence intervals (shaded, except for PL and naive) for the HAAS data.
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Summary and discussion

@ We derived the EIC for the mean of an arbitrarily transformed survival
time and construct doubly robust estimators.

o Future direction:

» Extension to also handle informative censoring.

> Leverage domain knowledge to avoid the conditional
quasi-independence assumption using the “proximal identification
framework™ (Tchetgen Tchetgen et al., 2020)

@ ArXiv preprint: arXiv:2208.06836
@ Code: https://github.com/wangyuyao98/left_trunc_.DR

Questions & Comments?
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https://arxiv.org/abs/2208.06836
https://github.com/wangyuyao98/left_trunc_DR

Appendix
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Assumptions
f, g, h: the densities of T|Z, Q|Z and Z, respectively.

Assumption 1 (Conditional quasi-independence)

The observed data density for (Q, T, Z) satisfies

[ f(t|2)g(qlz)h(2)/B, ift>q,
Pe.7.2(9,t,2) = { 0, otherwise,

where  =P*(Q < T) = [1(q < t)f(t|z)g(q|z)h(z) dt dq dz.

Assumption 2 (Positivity)

P*(Q@ < T|Z) >0 a.s.

Assumption 3 (Overlap)

There exists 0 < 71 < T < 0o such that T > 11 a.s., Q < 1 a.s.; also
G(m|Z) > 61 a.s. and F(m2|Z) <1 — 6, a.s. for some constants 6; > 0 and
62 > 0.
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Assumptions

Assumption 4 (Uniform Convergence)

There exist F* and G* such that

i), e |- eia

)

=o(1).
sup,2 O( )
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Assumptions

Assumption 5 (Asymptotic Linearity)

For fixed (t,z) € [r1,m] x Z, F(t|z) and G(t|z) are regular and
asymptotically linear estimators for F(t|z) and G(t|z) with influence
functions £1(t, z, O) and &(t, z, O), respectively. In addition, denote

Ru(t,7) = F(t2) — F*(t]z) — % > &(t.2,0)
Ro(t,z) = C(tlz) — G*(t]z) — %Zfz(t, 2,0)).
i=1

5.uppose HRI(.’ Z)HSUPQ - O(n71/2)' HR2('7Z)Hsup,2 = o(n*1/2), and
either | Ru(-, Z)|| 7y, = 0(1) o [Ra(:, Z) || 7vo = o(1).
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Inverse probability weighting (IPW) identification

@ Under Assumptions 1 and 2,

QZE{GIE(T?Z)}/E{G&ZJ'

@ Let « be the reverse time hazard function of Q given Z in the full

data:
alglz) = lim Fla=h<Q<dQ<qZ=2)
qaz) h—0+ h
— i Blea—h<Q<gqlZ=2) 06(qlz)/9q
h—0+ hP*(Q<qlZ=2) G(qlz)

— G(qlz) = exp{~ [ a(tlz)dt}.
@ « can be identified:

PQ|Z(q|Z)
P(Q<q<T|Z=2z)

— G can be identified from the observed data distribution.

a(qlz) =
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Reverse time counting process and backwards martingale

For t > 0, let
No(t) =1(t< Q< T),
Fi=0c{Z,1(Q<T),I(s<Q<T),1I(s<T):s>t}.
Define

dG(s|2)
G(s|Z)

Ag(t; G) = /too I(Q <s< T)a(s|Z)ds = /too 1(R<s<T)

Then

Mq(t; G) := Ng(t) — Ag(t; G)

is a backwards martingale with respect to {F;}+>0 in the observed data.
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Steps for constructing the proposed estimators

0 v(T) 1
Inverse probability of truncation =E G(T|2) E G(T|Z)
weighting identification

l G < conditional reverse time hazard

/l\
observed data distribution.

Find the EIC

Construct EIC-based estimator

(Figure from Bickel et al., 1993)

P - tangent space; V - IC; 7- EIC.
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Deriving the EIC

@ Derive an influence curve (IC)

%g(pe) =E{p(0)S(0)}, S8(0)= 8Iogpe(O)
=0 e=0

@ Project the IC onto the tangent space — EIC
¢(0;0,F, G, H)=p-U(6;F,G)

where

u(o; F,
T -

G)
v( 0 F(v|Z2) dMg(v; G)

), BTz T S

Recall that 8 =P*(Q < T)

@ The semiparametric efficiency bound : E(?).
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Two special cases
@ By setting F =0 — IPW estimator

T £ ¢ I W £ S S
Opw.q = {; @(T,-Zi)}/{; G(T[|Z’-)}a

@ By setting G=1 — Regression-based estimator

—1
n n 1
9 eg. = ., _
{21— F(Q,-iz,-)}

— v(Ti){1 - (QI\Z }+ Jo v(D)dF(t]Z)
; - (QI|ZI) ‘|

> [UTH{L = F(Q|Z)} + [2 v(t)dF(t|Z)] identifies E* {1(T)|Q, Z}.

@ Another regressnon based estimator is
/ { —n 1 }
i—1 1-— F(Q,|Z,)

~ B {u(T)|Z
ORegT2 = 27{ (T)IZ;}
where B*{v/(T})|Z:} = [3° v(t)dF(t]Z). 20 /38

—~1- ﬁ(Q,-|z-)



Some norm notation

For a random function X(t,z) with t € [11,72] and z € Z, define

||X('az)||§up,2:E{ sup IX(t,Z)z},

tE[’Tl,Tg]

IXC, 2) v = E [TVIX(-, 2)}?]
e TV{X(:,z)} =supp ZLI |X(xj,z) — X(xj—1,2)| is the total variation of

X(+,z) on the interval rTl,Tzl

@ P is the set of all possible partitions 71 = xp < x1 < ... < x5 = 7 of [11, 2]

30/38



Assumptions for F and G for 6,
@ Uniform convergence: There exist F* and G* such that

|Fe12) - F*(12)

—o(1), [6(12)-6*(12)

= o(1).

sup,2 sup,2

o Asymptotic linearity:
. ) 1<
F(t|z) — F*(t|z) = - ggl(t,z, 0;) + Ru(t, 2),

G(t|z) — G*(t|z) = %ng(t,z, 0;) + Ra(t, z).

i=1

where [Ri( 2)]up 2 = 0(n~ /%), [Ro( )2 = ol™2)
and either ||Ry(+, Z)[lty , = o(1) or [[Ra(+, Z)l 1y 2 = o(1).

@ e.g., it is satisfied when Cox model is used to estimate F and G.
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K-fold cross-fitting

1. Split the data into K folds of (almost) equal

size with the index sets 71, ..., Zk. Kf‘l"ds
2: for k=11to K do | 1
Estimate F and G with the out-of-k-fold BT - O
data = F(K and G(-H) I -
4: end for

5. Obtain dc by solving

K
L9 FR) Gy —
Z Z UI{97 F ! G } B O |:| Estimate F and G

k=1i€Zy
. Construct estimating equation
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Norm notation and cross integral product

Let © = {(Q;, T;,Z) :i=1,...,m} denote the data used to obtain F and G, and
let O; = (Q;, Ty, Z;) be an copy of the data that is independent of, but from the

same distribution as O.
2
F(tlz)) - Fo(t|zT)|} D 7

H’E - F0||%sup,2 =E (ET { sup
te[ri,7]
2
6(tl2:) - Go(tzf)\} ]) :

||é - G0||%sup,2 =E (ET { sup
te[r1,m]
T2 N
/ {a(v,ZT;F)—a(wZT;FO)}

Out-of-sample cross integral product:
1

Di(F.GiFo, Go) == E (E* [
1 1

where a(v, Z; F) = [/ {v(t) — 6}dF(t|Z)/{1 — F(v|Z)}
Yi(v) = W@ <v < Th).

)
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Assumptions on F and G for O

@ Uniform Consistency:

IF — Folltsup2 = (1), |G — Golltsup2 = (1)

o Product rate condition: D;(F, G; Fy, Gy) = o(n~*/?).
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Extensions to handle right censoring

C: censoring time; X :=min(T,C); A:=1(T < ()
Sc(t) :=P(C>t), Sp(t):=P(D>t), where D=C—-Q
Assume noninformative censoring.

Two scenarios:

@ Censoring can happen before truncation
» P*(C < Q) >0, subjects with Q < X are included.

Ua(6; Fx, G, Sc )

A{y (X) / Jo A{r(x 79}/5 (x)dF(x]Z) dMq(v; G)
X)G( X|Z F(v|2) G(v|Z)

@ Censoring always after truncation
» P*(Q < C) =1, subjects with Q < T are included.
U62(9; F7 G SD)
A
SD(X Q)

/ fo — 0}dF(t|z) dMQ(v; G)
F(v|Z) G(vlz) |’
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Simulation results

500 simulated data sets each with sample size 1000.
Truncation rate: 29.5%; 6o = P*(T > 3) = 0.576.
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Figure: Absolute bias, coverage rate of 95% confidence intervals with bootstrap standard

errors, and empirical standard deviation for different estimators.
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Simulation

The models in red are misspecified.
SD: standard deviation, SE: standard error, CP: coverage probability.

Estimator bias.  SD  SE/boot SE CP/boot CP
dr-Cox1-Cox1 -0.0016 0.021 0.020/0.020  0.948/0.946
dr-Cox1-Cox2 -0.0014 0.020 0.019/0.020  0.930/0.944
dr-Cox2-Cox1  -0.0010 0.020 0.019/0.020  0.938/0.946
dr-Cox2-Cox2 0.0184 0.019 0.018/0.019 0.838/0.836
cf-RF-RF 0.0032 0.021 0.023/0.025 0.966,/0.976
IPW.Q-Cox1 -0.0004 0.020 0.018/0.020  0.924/0.944
IPW.Q-Cox2 0.0184 0.018 0.017/0.019 0.814/0.832
IPW.Q-RF -0.0064 0.022 0.019/0.022  0.886/0.956
Reg.T1-Cox1  -0.0008 0.020 - /0.020 - /0.944
Reg.T1-Cox2 0.0183 0.018 - /0.019 - /0.842
Reg. TL.RF  -0.0073 0.022 - /0.022 - /0.934
Reg. T2-Cox1  -0.0010 0.020 - /0.020 - /0.942
Reg.T2-Cox2 0.0181 0.018 - /0.019 - /0.844
Reg. T2-RF -0.0070 0.022 - /0.022 - /0.940
PL 0.0193 0.018 - /0.018 - /0.824
naive 0.1389 0.014 0.014/0.014  0.000/0.000
full data -0.0007 0.013 0.013/0.013  0.956/0.944
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CNS lymphoma data
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Figure: Estimates of the overall survival for the CNS lymphoma data with their 95%
bootstrap confidence intervals.
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