Doubly Robust Estimation under Covariate-induced Dependent Left Truncation

Yuyao Wang
Department of Mathematics, University of California San Diego yuw079@ucsd.edu

Joint work with:
Andrew Ying, Google
Ronghui (Lily) Xu, University of California San Diego

Left truncation and selection bias

- Quantity of interest: time to event (T)
- In prevelant cohort studes:
- Often only subjects with time to events greater than the enrollment times (Q) are included in the data
- Subjects with early event times tend not to be captured

Example: CNS lymphoma data

- Data from a study on central nervous system (CNS) lymphoma (Wang et al., 2015) [Publicly available in the supplement of Vakulenko-Lagun et al. (2022)]

Figure from Vakulenko-Lagun et al., (2022) CR: complete response.
\rightarrow Restrict to the 98 patients that were relapsed, for which the time is recorded.

- Quantity of interest: overall survival
- T - time to death
- For the original data set with 172 patients
- Q - time to CR
- For the restricted data set with 98 patients
- Q - time to relapse

Example: HAAS data

2560 subjects who were alive and did not have cognitive impairment

463 (18.1\%) subjects were loss to follow-up (censored)

- Quantity of interest:

Cognitive impairment-free survival on the age scale.

- T - age to moderate cognitive impairment or death
- Q - age at entry of HAAS

\rightarrow Selection bias

Literature

Under the random left truncation assumption

- Likelihood-based approaches (Woodroofe, 1985; Wang et al., 1986; Wang, 1989, 1991; Qin et al. 2011)
- Random truncation assumption can be weakened to quasi-independence assumption (Tsai, 1990)
! The quasi-independence assumption may be violated.
- CNS lymohoma data:
- It is plausible that time to death and time to relapse are dependent (Vakulenko-Lagun et al., 2022).
- HAAS data:
- Violation of quasi-independence is detected by conditional Kendall's tau test (Tsai, 1990);
- tau $=0.0426$ with p -value 0.0014 .

Literature

When the left truncation time and the event time are dependent:

- Copula models (Chaieb et al., 2006; Emura et al., 2011; Emura \& Wang, 2012)
- Structural transformation models (Efron \& Petrosian, 1994; Chiou et al., 2019)
! Depend on strong model assumptions

Literature

When the left truncation time and the event time are dependent:

- Copula models (Chaieb et al., 2006; Emura et al., 2011; Emura \& Wang, 2012)
- Structural transformation models (Efron \& Petrosian, 1994; Chiou et al., 2019)
! Depend on strong model assumptions
- Incorporate left truncation time as a covariate in the event time model (Gail et al., 2009; Mackenzie, 2012; Cheng \& Wang 2015).
- e.g., Entry-age adjusted age-scale model (Gail et al., 2009)
! Biologically unjustified; depend on model assumptions.

Literature

When the left truncation time and the event time are dependent:

- Copula models (Chaieb et al., 2006; Emura et al., 2011; Emura \& Wang, 2012)
- Structural transformation models (Efron \& Petrosian, 1994; Chiou et al., 2019)
! Depend on strong model assumptions
- Incorporate left truncation time as a covariate in the event time model (Gail et al., 2009; Mackenzie, 2012; Cheng \& Wang 2015).
- e.g., Entry-age adjusted age-scale model (Gail et al., 2009)
! Biologically unjustified; depend on model assumptions.
! Do not use covariate information.

Literature

When the dependence is captured by measured covariates:
In regression settings:

- Cox model with risk set adjustment

For marginal survival probabilities:

- Inverse probability weighting (IPW) estimators (Vakulenko-Lagun et al., 2022).
! Sensitive to misspecification of the truncation model; inefficient.

Literature

When the dependence is captured by measured covariates:
In regression settings:

- Cox model with risk set adjustment

For marginal survival probabilities:

- Inverse probability weighting (IPW) estimators (Vakulenko-Lagun et al., 2022).
! Sensitive to misspecification of the truncation model; inefficient.

Motivate us to seek estimators that

- Have more protect against model misspecification;
- More efficient;
- Allow us to incorporate nonparametric methods (which are known to have slower than root- n convergence) to obtain root- n consistent estimators.

Our contributions

- Derive the efficient influence curve (EIC) for the expectation of an arbitrarily transformed survival time.
- Construct EIC-based estimators that are shown to have favorable properties:
- Model double robustness
- Rate double robustness
- Semiparametric efficiency
- Provide technical conditions for the asymptotic properties that appear to not have been carefully examined in the literature for time-to-event data.
- Our work represents the first attempt to construct doubly robust estimators in the presence of left truncation.
- Does NOT fall under the established framework of coarsened data where doubly robust approaches are developed.

Notation and estimand

- Q - left truncation time; $\quad T$ - event time; $\quad Z$ - covariates
- Full data - if there were no left truncation
- We observe $O=(Q, T, Z)$ only if $Q<T$
- F, G, H : the full data CDF's of $T|Z, Q| Z$ and Z, respectively.
- superscript *: quantities related to the full data distribution e.g., $\mathbb{P}^{*}, \mathbb{E}^{*}, p^{*}, P^{*}$
- without *: quantities related to the observed data distribution e.g., $\mathbb{P}, \mathbb{E}, p, P$

Notation and estimand

- Q - left truncation time; T - event time; $\quad Z$ - covariates
- Full data - if there were no left truncation
- We observe $O=(Q, T, Z)$ only if $Q<T$
- F, G, H : the full data CDF's of $T|Z, Q| Z$ and Z, respectively.
- superscript *: quantities related to the full data distribution e.g., $\mathbb{P}^{*}, \mathbb{E}^{*}, p^{*}, P^{*}$
- without *: quantities related to the observed data distribution e.g., $\mathbb{P}, \mathbb{E}, p, P$
- Estimand: $\theta:=\mathbb{E}^{*}\{\nu(T)\}$, where ν is a given function.
- e.g., when $\nu(t)=\mathbb{1}\left(t>t_{0}\right), \theta=\mathbb{P}^{*}\left(T>t_{0}\right)$ (survival probability).
- e.g., when $\nu(t)=\min \left(t, t_{0}\right), \theta=\mathbb{E}^{*}\left\{\min \left(T, t_{0}\right)\right\}($ RMST $)$.

Assumptions

- Conditional quasi-independence:
Q and T are "independent" given Z on the observed region $\{t>q\}$.
- Positivity: $\mathbb{P}^{*}(Q<T \mid Z)>0$ a.s.
- Overlap assumption for F and G : Stronger than positivity.

EIC and double robustness

- EIC:

$$
\varphi(O ; \theta, F, G, H)=\beta \cdot U(\theta ; F, G)
$$

where

$$
\begin{aligned}
& \qquad(\theta ; F, G) \\
& =\frac{\nu(T)-\theta}{G(T \mid Z)}-\int_{0}^{\infty} \mathbb{E}^{*}\{\nu(T)-\theta \mid T<v, Z\} \cdot \frac{F(v \mid Z)}{1-F(v \mid Z)} \cdot \frac{d \bar{M}_{Q}(v ; G)}{G(v \mid Z)}, \\
& \text { and recall that } \beta=\mathbb{P}^{*}(Q<T) \text {. }
\end{aligned}
$$

- The semiparametric efficiency bound : $\mathbb{E}\left(\varphi^{2}\right)$.

EIC and double robustness

- EIC:

$$
\varphi(O ; \theta, F, G, H)=\beta \cdot U(\theta ; F, G)
$$

where

$$
\begin{aligned}
& \qquad U(\theta ; F, G) \\
& =\frac{\nu(T)-\theta}{G(T \mid Z)}-\int_{0}^{\infty} \mathbb{E}^{*}\{\nu(T)-\theta \mid T<v, Z\} \cdot \frac{F(v \mid Z)}{1-F(v \mid Z)} \cdot \frac{d \bar{M}_{Q}(v ; G)}{G(v \mid Z)}, \\
& \text { and recall that } \beta=\mathbb{P}^{*}(Q<T) \text {. }
\end{aligned}
$$

- The semiparametric efficiency bound : $\mathbb{E}\left(\varphi^{2}\right)$.

Double robustness:

$\mathbb{E}\left\{U\left(\theta_{0} ; F, G\right)\right\}=0$ if either $F=F_{0}$ or $G=G_{0}$

Estimation

Let $\left\{O_{i}\right\}_{i=1}^{n}$ be an observed random sample of size $n ; O_{i}=\left(Q_{i}, T_{i}, Z_{i}\right)$.

- First estimate F and G
- Then solve the following equation for θ :

$$
\sum_{i=1}^{n} U_{i}(\theta ; \hat{F}, \hat{G})=0
$$

Estimation

Let $\left\{O_{i}\right\}_{i=1}^{n}$ be an observed random sample of size $n ; \quad O_{i}=\left(Q_{i}, T_{i}, Z_{i}\right)$.

- First estimate F and G
- Then solve the following equation for θ :

$$
\sum_{i=1}^{n} U_{i}(\theta ; \hat{F}, \hat{G})=0
$$

- Closed-form solution:

$$
\begin{aligned}
\hat{\theta}_{d r}=\left(\sum_{i=1}^{n}\right. & {\left.\left[\frac{1}{\hat{G}\left(T_{i} \mid Z_{i}\right)}-\int_{0}^{\infty} \frac{\hat{F}\left(v \mid Z_{i}\right)}{\hat{G}\left(v \mid Z_{i}\right)\left\{1-\hat{F}\left(v \mid Z_{i}\right)\right\}} d \bar{M}_{Q, i}(v ; \hat{G})\right]\right)^{-1} } \\
& \times\left(\sum_{i=1}^{n}\left[\frac{\nu\left(T_{i}\right)}{\hat{G}\left(T_{i} \mid Z_{i}\right)}-\int_{0}^{\infty} \frac{\int_{0}^{v} \nu(t) d \hat{F}\left(t \mid Z_{i}\right)}{\hat{G}\left(v \mid Z_{i}\right)\left\{1-\hat{F}\left(v \mid Z_{i}\right)\right\}} d \bar{M}_{Q, i}(v ; \hat{G})\right]\right)
\end{aligned}
$$

Model double robustness under asymptotic linearity

Suppose

- \hat{F} and \hat{G} uniformly converge to F^{*} and G^{*}, respectively;
- \hat{F} and \hat{G} are asymptotically linear.

If either $F^{*}=F_{0}$ or $G^{*}=G_{0}$, we have:

- $\sqrt{n}\left(\hat{\theta}_{d r}-\theta_{0}\right) \xrightarrow{d} N\left(0, \sigma^{2}\right)$.

Furthermore, when both $F^{*}=F_{0}$ and $G^{*}=G_{0}$,

- $\hat{\theta}_{d r}$ acheives the semiparametric efficiency bound;
- σ^{2} can be consistently estimated by $\hat{\sigma}^{2}$, where

$$
\hat{\sigma}^{2}=\hat{\beta}^{2} \cdot \frac{1}{n} \sum_{i=1}^{n} U_{i}^{2}\left(\hat{\theta}_{d r}, \hat{F}, \hat{G}\right), \quad \hat{\beta}=\left\{n^{-1} \sum_{i=1}^{n} 1 / \hat{G}\left(T_{i} \mid Z_{i}\right)\right\}^{-1} .
$$

Rate double robustness with cross-fitting

K-fold cross-fitting:

$$
\sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} U_{i}\left\{\theta, \hat{F}^{(-k)}, \hat{G}^{(-k)}\right\}=0 \quad \rightarrow \quad \hat{\theta}_{c f}
$$

Out-of-sample cross integral product:

$$
\begin{aligned}
& \mathcal{D}_{\dagger}\left(\hat{F}, \hat{G} ; F_{0}, G_{0}\right):=\mathbb{E}\left(\mathbb{E}_{\dagger}\right. {\left[\mid \int_{\tau_{1}}^{\tau_{2}}\left\{a\left(v, Z_{\dagger} ; \hat{F}\right)-a\left(v, Z_{\dagger} ; F_{0}\right)\right\}\right.} \\
&\left.\left.\left.\cdot Y_{\dagger}(v) d\left\{\frac{1}{\hat{G}\left(v \mid Z_{\dagger}\right)}-\frac{1}{G_{0}\left(v \mid Z_{\dagger}\right)}\right\} \right\rvert\,\right]\right)
\end{aligned}
$$

where $a(v, Z ; F)=\int_{0}^{v}\{\nu(t)-\theta\} d F(t \mid Z) /\{1-F(v \mid Z)\}$

$$
Y_{\dagger}(v)=\mathbb{1}\left(Q_{\dagger} \leq v<T_{\dagger}\right) .
$$

Rate double robustness

Suppose

- \hat{F} and \hat{G} are uniformly consistent;
- $\mathcal{D}_{\dagger}\left(\hat{F}, \hat{G} ; F_{0}, G_{0}\right)=o\left(n^{-1 / 2}\right)$.

We have

- $\sqrt{n}\left(\hat{\theta}_{c f}-\theta_{0}\right) \xrightarrow{d} N\left(0, \sigma^{2}\right)$, where $\sigma^{2}=\mathbb{E}\left(\varphi^{2}\right)$;
- $\hat{\theta}_{c f}$ achieves the semiparametric efficiency bound;
- σ^{2} can be consistently estimated by $\hat{\sigma}_{c f}^{2}$, where

$$
\begin{aligned}
& \hat{\sigma}_{c f}^{2}=\hat{\beta}_{c f}^{2} \cdot \frac{1}{n} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} U_{i}^{2}\left\{\hat{\theta}_{c f}, \hat{F}^{(-k)}, \hat{G}^{(-k)}\right\}, \\
& \hat{\beta}_{c f}=\left\{\frac{1}{n} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} \frac{1}{\hat{G}^{(-k)}\left(T_{i} \mid Z_{i}\right)}\right\}^{-1}
\end{aligned}
$$

Nonparametric methods can be used to estimate F and G !

Application: CNS lymphoma data

- Data from a study on central nervous system (CNS) lymphoma (Wang et al., 2015) [Publicly available in the supplement of Vakulenko-Lagun et al. (2022)]

Figure from Vakulenko-Lagun et al., (2022) CR: complete response.
\rightarrow Restrict to the 98 patients that were relapsed, for which the time is recorded.

- Quantity of interest: overall survival.
- It is plausible that time to death and time to relapse are dependent, and treatment is strongly associated with both.
- Binary treatment variables:
- chemotherapy
- radiation therapy

Application: CNS lymphoma data

Figure: Estimates of the overall survival for the CNS lymphoma data.

Application: HAAS data

- Quantity of interest:

Cognitive impairment-free survival on the age scale.

- Dependence detected: tau $=0.0426$ with p-value 0.0014 .
- Covariates:
- education (years)
- APOE positive (yes/no)
- mid-life alcohol consumption (light/heavy)
- mid-life cigarette consumption (yes/no)

Application: HAAS data

Figure: Estimated cognitive impairment-free survival and their 95\% bootstrap confidence intervals (shaded, except for PL and naive) for the HAAS data.

Summary and discussion

- We derived the EIC for the mean of an arbitrarily transformed survival time and construct doubly robust estimators.
- Future direction:
- Extension to also handle informative censoring.
- Leverage domain knowledge to avoid the conditional quasi-independence assumption using the "proximal identification framework" (Tchetgen Tchetgen et al., 2020)
- ArXiv preprint: arXiv:2208.06836
- Code: https://github.com/wangyuyao98/left_trunc_DR

Questions \& Comments?

Appendix

Assumptions

f, g, h : the densities of $T|Z, Q| Z$ and Z, respectively.
Assumption 1 (Conditional quasi-independence)
The observed data density for (Q, T, Z) satisfies

$$
p_{Q, T, Z}(q, t, z)= \begin{cases}f(t \mid z) g(q \mid z) h(z) / \beta, & \text { if } t>q \\ 0, & \text { otherwise },\end{cases}
$$

where $\beta=\mathbb{P}^{*}(Q<T)=\int \mathbb{1}(q<t) f(t \mid z) g(q \mid z) h(z) d t d q d z$.
Assumption 2 (Positivity)
$\mathbb{P}^{*}(Q<T \mid Z)>0$ a.s.
Assumption 3 (Overlap)
There exists $0<\tau_{1}<\tau_{2}<\infty$ such that $T \geq \tau_{1}$ a.s., $Q \leq \tau_{2}$ a.s.; also $G\left(\tau_{1} \mid Z\right) \geq \delta_{1}$ a.s. and $F\left(\tau_{2} \mid Z\right) \leq 1-\delta_{2}$ a.s. for some constants $\delta_{1}>0$ and $\delta_{2}>0$.

Assumptions

Assumption 4 (Uniform Convergence)

There exist F^{*} and G^{*} such that

$$
\left\|\hat{F}(\cdot \mid Z)-F^{*}(\cdot \mid Z)\right\|_{\text {sup }, 2}=o(1), \quad\left\|\hat{G}(\cdot \mid Z)-G^{*}(\cdot \mid Z)\right\|_{\text {sup }, 2}=o(1) .
$$

Assumptions

Assumption 5 (Asymptotic Linearity)

For fixed $(t, z) \in\left[\tau_{1}, \tau_{2}\right] \times \mathcal{Z}, \hat{F}(t \mid z)$ and $\hat{G}(t \mid z)$ are regular and asymptotically linear estimators for $F(t \mid z)$ and $G(t \mid z)$ with influence functions $\xi_{1}(t, z, O)$ and $\xi_{2}(t, z, O)$, respectively. In addition, denote

$$
\begin{aligned}
& R_{1}(t, z)=\hat{F}(t \mid z)-F^{*}(t \mid z)-\frac{1}{n} \sum_{i=1}^{n} \xi_{1}\left(t, z, O_{i}\right) \\
& R_{2}(t, z)=\hat{G}(t \mid z)-G^{*}(t \mid z)-\frac{1}{n} \sum_{i=1}^{n} \xi_{2}\left(t, z, O_{i}\right)
\end{aligned}
$$

Suppose $\left\|R_{1}(\cdot, Z)\right\|_{\text {sup }, 2}=o\left(n^{-1 / 2}\right),\left\|R_{2}(\cdot, Z)\right\|_{\text {sup }, 2}=o\left(n^{-1 / 2}\right)$, and either $\left\|R_{1}(\cdot, Z)\right\|_{T V, 2}=o(1)$ or $\left\|R_{2}(\cdot, Z)\right\|_{T V, 2}=o(1)$.

Inverse probability weighting (IPW) identification

- Under Assumptions 1 and 2,

$$
\theta=\mathbb{E}\left\{\frac{\nu(T)}{G(T \mid Z)}\right\} / \mathbb{E}\left\{\frac{1}{G(T \mid Z)}\right\}
$$

- Let α be the reverse time hazard function of Q given Z in the full data:

$$
\begin{aligned}
\alpha(q \mid z) & :=\lim _{h \rightarrow 0+} \frac{\mathbb{P}^{*}(q-h<Q \leq q \mid Q \leq q, Z=z)}{h} \\
& =\lim _{h \rightarrow 0+} \frac{\mathbb{P}^{*}(q-h<Q \leq q \mid Z=z)}{h \mathbb{P}^{*}(Q \leq q \mid Z=z)}=\frac{\partial G(q \mid z) / \partial q}{G(q \mid z)} . \\
\Longrightarrow G(q \mid z) & =\exp \left\{-\int_{q}^{\infty} \alpha(t \mid z) d t\right\} .
\end{aligned}
$$

- α can be identified:

$$
\alpha(q \mid z)=\frac{p_{Q \mid Z}(q \mid z)}{\mathbb{P}(Q \leq q<T \mid Z=z)}
$$

$\Longrightarrow G$ can be identified from the observed data distribution.

Reverse time counting process and backwards martingale

For $t \geq 0$, let

$$
\begin{aligned}
& \bar{N}_{Q}(t)=\mathbb{1}(t \leq Q<T) \\
& \overline{\mathcal{F}}_{t}=\sigma\{Z, \mathbb{1}(Q<T), \mathbb{1}(s \leq Q<T), \mathbb{1}(s \leq T): s \geq t\}
\end{aligned}
$$

Define

$$
\bar{A}_{Q}(t ; G)=\int_{t}^{\infty} \mathbb{1}(Q \leq s<T) \alpha(s \mid Z) d s=\int_{t}^{\infty} \mathbb{1}(Q \leq s<T) \frac{d G(s \mid Z)}{G(s \mid Z)} .
$$

Then

$$
\bar{M}_{Q}(t ; G):=\bar{N}_{Q}(t)-\bar{A}_{Q}(t ; G)
$$

is a backwards martingale with respect to $\left\{\overline{\mathcal{F}}_{t}\right\}_{t \geq 0}$ in the observed data.

Steps for constructing the proposed estimators

Inverse probability of truncation weighting identification

Construct EIC-based estimator
$\theta=\mathbb{E}\left\{\frac{\nu(T)}{G(T \mid Z)}\right\} / \mathbb{E}\left\{\frac{1}{G(T \mid Z)}\right\}$
$G \leftarrow$ conditional reverse time hazard \uparrow
observed data distribution.

(Figure from Bickel et al., 1993)
\dot{P} - tangent space; $\Psi-$ IC; $\tilde{\ell}$ - EIC.

Deriving the EIC

- Derive an influence curve (IC)

$$
\left.\frac{\partial}{\partial \epsilon} \theta\left(P_{\epsilon}\right)\right|_{\epsilon=0}=\mathbb{E}\{\varphi(O) \mathcal{S}(O)\}, \quad \mathcal{S}(O)=\left.\frac{\partial}{\partial \epsilon} \log p_{\epsilon}(O)\right|_{\epsilon=0}
$$

- Project the IC onto the tangent space \rightarrow EIC

$$
\varphi(O ; \theta, F, G, H)=\beta \cdot U(\theta ; F, G)
$$

where

$$
\begin{aligned}
& U(\theta ; F, G) \\
= & \frac{\nu(T)-\theta}{G(T \mid Z)}-\int_{0}^{\infty} \mathbb{E}^{*}\{\nu(T)-\theta \mid T<v, Z\} \cdot \frac{F(v \mid Z)}{1-F(v \mid Z)} \cdot \frac{d \bar{M}_{Q}(v ; G)}{G(v \mid Z)}
\end{aligned}
$$

Recall that $\beta=\mathbb{P}^{*}(Q<T)$

- The semiparametric efficiency bound : $\mathbb{E}\left(\varphi^{2}\right)$.

Two special cases

- By setting $\hat{F} \equiv 0 \rightarrow$ IPW estimator

$$
\hat{\theta}_{\mathrm{IPW}, \mathrm{Q}}=\left\{\sum_{i=1}^{n} \frac{\nu\left(T_{i}\right)}{\hat{G}\left(T_{i} \mid Z_{i}\right)}\right\} /\left\{\sum_{i=1}^{n} \frac{1}{\hat{G}\left(T_{i} \mid Z_{i}\right)}\right\},
$$

- By setting $\hat{G} \equiv 1 \rightarrow$ Regression-based estimator

$$
\begin{aligned}
\hat{\theta}_{\text {Reg.T1 }}=\{ & \left.\sum_{i=1}^{n} \frac{1}{1-\hat{F}\left(Q_{i} \mid Z_{i}\right)}\right\}^{-1} \\
& {\left[\sum_{i=1}^{n} \frac{\nu\left(T_{i}\right)\left\{1-\hat{F}\left(Q_{i} \mid Z_{i}\right)\right\}+\int_{0}^{Q_{i}} \nu(t) d \hat{F}\left(t \mid Z_{i}\right)}{1-\hat{F}\left(Q_{i} \mid Z_{i}\right)}\right] . }
\end{aligned}
$$

- $\left[\nu(T)\{1-F(Q \mid Z)\}+\int_{0}^{Q} \nu(t) d F(t \mid Z)\right]$ identifies $\mathbb{E}^{*}\{\nu(T) \mid Q, Z\}$.
- Another regression based estimator is

$$
\hat{\theta}_{\text {Reg.T2 }}=\left[\sum_{i=1}^{n} \frac{\hat{\mathbb{E}}^{*}\left\{\nu\left(T_{i}\right) \mid Z_{i}\right\}}{1-\hat{F}\left(Q_{i} \mid Z_{i}\right)}\right] /\left\{\sum_{i=1}^{n} \frac{1}{1-\hat{F}\left(Q_{i} \mid Z_{i}\right)}\right\},
$$

where $\hat{\mathbb{E}}^{*}\left\{\nu\left(T_{i}\right) \mid Z_{i}\right\}=\int_{0}^{\infty} \nu(t) d \hat{F}\left(t \mid Z_{i}\right)$.

Some norm notation

For a random function $X(t, z)$ with $t \in\left[\tau_{1}, \tau_{2}\right]$ and $z \in \mathcal{Z}$, define

$$
\begin{aligned}
& \|X(\cdot, Z)\|_{\text {sup }, 2}^{2}=\mathbb{E}\left\{\sup _{t \in\left[\tau_{1}, \tau_{2}\right]}|X(t, Z)|^{2}\right\} \\
& \|X(\cdot, Z)\|_{\mathrm{TV}, 2}^{2}=\mathbb{E}\left[\operatorname{TV}\{X(\cdot, Z)\}^{2}\right]
\end{aligned}
$$

- $\operatorname{TV}\{X(\cdot, z)\}=\sup _{\mathcal{P}} \sum_{j=1}^{J}\left|X\left(x_{j}, z\right)-X\left(x_{j-1}, z\right)\right|$ is the total variation of $X(\cdot, z)$ on the interval $\left[\tau_{1}, \tau_{2}\right]$
- \mathcal{P} is the set of all possible partitions $\tau_{1}=x_{0}<x_{1}<\ldots<x_{J}=\tau_{2}$ of $\left[\tau_{1}, \tau_{2}\right]$

Assumptions for \hat{F} and \hat{G} for $\hat{\theta}_{d r}$

- Uniform convergence: There exist F^{*} and G^{*} such that

$$
\left\|\hat{F}(\cdot \mid Z)-F^{*}(\cdot \mid Z)\right\|_{\text {sup }, 2}=o(1), \quad\left\|\hat{G}(\cdot \mid Z)-G^{*}(\cdot \mid Z)\right\|_{\text {sup }, 2}=o(1) .
$$

- Asymptotic linearity:

$$
\begin{aligned}
& \hat{F}(t \mid z)-F^{*}(t \mid z)=\frac{1}{n} \sum_{i=1}^{n} \xi_{1}\left(t, z, O_{i}\right)+R_{1}(t, z), \\
& \hat{G}(t \mid z)-G^{*}(t \mid z)=\frac{1}{n} \sum_{i=1}^{n} \xi_{2}\left(t, z, O_{i}\right)+R_{2}(t, z) .
\end{aligned}
$$

where $\left\|R_{1}(\cdot, Z)\right\|_{\text {sup }, 2}=o\left(n^{-1 / 2}\right),\left\|R_{2}(\cdot, Z)\right\|_{\text {sup }, 2}=o\left(n^{-1 / 2}\right)$, and either $\left\|R_{1}(\cdot, Z)\right\|_{\mathrm{TV}, 2}=o(1)$ or $\left\|R_{2}(\cdot, Z)\right\|_{\mathrm{TV}, 2}=o(1)$.

- e.g., it is satisfied when Cox model is used to estimate F and G.

K-fold cross-fitting

1: Split the data into K folds of (almost) equal size with the index sets $\mathcal{I}_{1}, \ldots, \mathcal{I}_{K}$.
2: for $k=1$ to K do
3: Estimate F and G with the out-of- k-fold data $\Longrightarrow \hat{F}^{(-k)}$ and $\hat{G}^{(-k)}$
4: end for
5: Obtain $\hat{\theta}_{c f}$ by solving

$$
\sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} U_{i}\left\{\theta, \hat{F}^{(-k)}, \hat{G}^{(-k)}\right\}=0
$$

Estimate F and G
Construct estimating equation

Norm notation and cross integral product

Let $\mathcal{O}=\left\{\left(Q_{i}, T_{i}, Z_{i}\right): i=1, \ldots, m\right\}$ denote the data used to obtain \hat{F} and \hat{G}, and let $O_{\dagger}=\left(Q_{\dagger}, T_{\dagger}, Z_{\dagger}\right)$ be an copy of the data that is independent of, but from the same distribution as \mathcal{O}.

$$
\begin{aligned}
& \left\|\hat{F}-F_{0}\right\|_{\dagger, \text { sup }, 2}^{2}:=\mathbb{E}\left(\mathbb{E}_{\dagger}\left[\left\{\sup _{t \in\left[\tau_{1}, \tau_{2}\right]}\left|\hat{F}\left(t \mid Z_{\dagger}\right)-F_{0}\left(t \mid Z_{\dagger}\right)\right|\right\}^{2}\right]\right), \\
& \left\|\hat{G}-G_{0}\right\|_{\dagger, \text { sup }, 2}^{2}:=\mathbb{E}\left(\mathbb{E}_{\dagger}^{2}\left[\left\{\sup _{t \in\left[\tau_{1}, \tau_{2}\right]}\left|\hat{G}\left(t \mid Z_{\dagger}\right)-G_{0}\left(t \mid Z_{\dagger}\right)\right|\right\}^{2}\right]\right) .
\end{aligned}
$$

Out-of-sample cross integral product:

$$
\begin{aligned}
& \mathcal{D}_{\dagger}\left(\hat{F}, \hat{G} ; F_{0}, G_{0}\right):=\mathbb{E}\left(\mathbb { E } _ { \dagger } \left[\mid \int_{\tau_{1}}^{\tau_{2}}\left\{a\left(v, Z_{\dagger} ; \hat{F}\right)-a\left(v, Z_{\dagger} ; F_{0}\right)\right\}\right.\right. \\
&\left.\left.\left.\cdot Y_{\dagger}(v) d\left\{\frac{1}{\hat{G}\left(v \mid Z_{\dagger}\right)}-\frac{1}{G_{0}\left(v \mid Z_{\dagger}\right)}\right\} \right\rvert\,\right]\right),
\end{aligned}
$$

where $a(v, Z ; F)=\int_{0}^{v}\{\nu(t)-\theta\} d F(t \mid Z) /\{1-F(v \mid Z)\}$

$$
Y_{\dagger}(v)=\mathbb{1}\left(Q_{\dagger} \leq v<T_{\dagger}\right) .
$$

Assumptions on \hat{F} and \hat{G} for $\hat{\theta}_{c f}$

- Uniform Consistency:

$$
\left\|\hat{F}-F_{0}\right\|_{\dagger, \text { sup }, 2}=o(1), \quad\left\|\hat{G}-G_{0}\right\|_{\dagger, \text { sup }, 2}=o(1)
$$

- Product rate condition: $\mathcal{D}_{\dagger}\left(\hat{F}, \hat{G} ; F_{0}, G_{0}\right)=o\left(n^{-1 / 2}\right)$.

Extensions to handle right censoring

C : censoring time; $\quad X:=\min (T, C) ; \quad \Delta:=\mathbb{1}(T<C)$
$S_{C}(t):=\mathbb{P}(C>t), \quad S_{D}(t):=\mathbb{P}(D>t)$, where $D=C-Q$
Assume noninformative censoring.

Two scenarios:

- Censoring can happen before truncation
- $\mathbb{P}^{*}(C<Q)>0$, subjects with $Q<X$ are included.

$$
\begin{aligned}
& U_{c 1}\left(\theta ; F_{x}, G, S_{c}\right) \\
= & \frac{\Delta\{\nu(X)-\theta\}}{S_{c}(X) G(X \mid Z)}-\int_{0}^{\infty} \frac{\int_{0}^{v} \Delta\{\nu(x)-\theta\} / S_{c}(x) d F_{x}(x \mid Z)}{1-F(v \mid Z)} \cdot \frac{d \tilde{M}_{Q}(v ; G)}{G(v \mid Z)} .
\end{aligned}
$$

- Censoring always after truncation
- $\mathbb{P}^{*}(Q<C)=1$, subjects with $Q<T$ are included.

$$
\begin{aligned}
& U_{c 2}\left(\theta ; F, G, S_{D}\right) \\
= & \frac{\Delta}{S_{D}(X-Q)}\left[\frac{\nu(X)-\theta}{G(X \mid Z)}-\int_{0}^{\infty} \frac{\int_{0}^{v}\{\nu(t)-\theta\} d F(t \mid z)}{1-F(v \mid Z)} \cdot \frac{d \tilde{M}_{Q}(v ; G)}{G(v \mid Z)}\right] .
\end{aligned}
$$

Simulation results

500 simulated data sets each with sample size 1000.
Truncation rate: $29.5 \% ; \quad \theta_{0}=P^{*}(T>3)=0.576$.

Figure: Absolute bias, coverage rate of 95% confidence intervals with bootstrap standard errors, and empirical standard deviation for different estimators.

Simulation

The models in red are misspecified.
SD: standard deviation, SE: standard error, CP: coverage probability.

Estimator	bias	SD	SE/boot SE	CP/boot CP
dr-Cox1-Cox1	-0.0016	0.021	$0.020 / 0.020$	$0.948 / 0.946$
dr-Cox1-Cox2	-0.0014	0.020	$0.019 / 0.020$	$0.930 / 0.944$
dr-Cox2-Cox1	-0.0010	0.020	$0.019 / 0.020$	$0.938 / 0.946$
dr-Cox2-Cox2	0.0184	0.019	$0.018 / 0.019$	$0.838 / 0.836$
cf-RF-RF	0.0032	0.021	$0.023 / 0.025$	$0.966 / 0.976$
IPW.Q-Cox1	-0.0004	0.020	$0.018 / 0.020$	$0.924 / 0.944$
IPW.Q-Cox2	0.0184	0.018	$0.017 / 0.019$	$0.814 / 0.832$
IPW.Q-RF	-0.0064	0.022	$0.019 / 0.022$	$0.886 / 0.956$
Reg.T1-Cox1	-0.0008	0.020	$-/ 0.020$	$-/ 0.944$
Reg.T1-Cox2	0.0183	0.018	$-/ 0.019$	$-/ 0.842$
Reg.T1-RF	-0.0073	0.022	$-/ 0.022$	$-/ 0.934$
Reg.T2-Cox1	-0.0010	0.020	$-/ 0.020$	$-/ 0.942$
Reg.T2-Cox2	0.0181	0.018	$-/ 0.019$	$-/ 0.844$
Reg.T2-RF	-0.0070	0.022	$-/ 0.022$	$-/ 0.940$
PL	0.0193	0.018	$-/ 0.018$	$-/ 0.824$
naive	0.1389	0.014	$0.014 / 0.014$	$0.000 / 0.000$
full data	-0.0007	0.013	$0.013 / 0.013$	$0.956 / 0.944$

CNS lymphoma data

Figure: Estimates of the overall survival for the CNS lymphoma data with their 95\% bootstrap confidence intervals.

