Doubly Robust Estimation under Covariate-induced Dependent Left Truncation

Yuyao Wang

Department of Mathematics, University of California San Diego yuw079@ucsd.edu

Joint work with:

Andrew Ying, Google

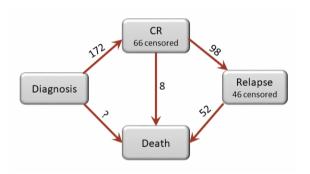
Ronghui (Lily) Xu, University of California San Diego

Left truncation and selection bias

- Quantity of interest: time to event (T)
- In prevelant cohort studes:
 - ▶ Often only subjects with time to events greater than the enrollment times (Q) are included in the data
 - Subjects with early event times tend not to be captured

Example: CNS lymphoma data

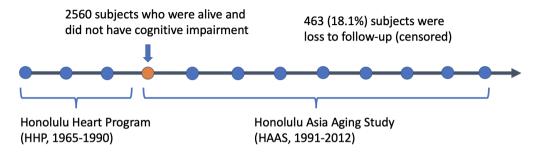
 Data from a study on central nervous system (CNS) lymphoma (Wang et al., 2015)
 [Publicly available in the supplement of Vakulenko-Lagun et al. (2022)]



- Quantity of interest: overall survival
- T time to death
- For the original data set with 172 patients
 - Q time to CR
- For the restricted data set with 98 patients
 - Q time to relapse

Figure from Vakulenko-Lagun et al., (2022) CR: complete response.

Example: HAAS data



- Quantity of interest: Cognitive impairment-free survival on the age scale.
- T age to moderate cognitive impairment or death
- Q age at entry of HAAS

\rightarrow Selection bias

Under the random left truncation assumption

- Likelihood-based approaches (Woodroofe, 1985; Wang et al., 1986; Wang, 1989, 1991; Qin et al. 2011)
- Random truncation assumption can be weakened to quasi-independence assumption (Tsai, 1990)
- ! The quasi-independence assumption may be violated.
- CNS lymohoma data:
 - ▶ It is plausible that time to death and time to relapse are dependent (Vakulenko-Lagun et al., 2022).
- HAAS data:
 - ▶ Violation of quasi-independence is detected by conditional Kendall's tau test (Tsai, 1990);
 - ► tau = 0.0426 with p-value 0.0014.

When the left truncation time and the event time are dependent:

- Copula models (Chaieb et al., 2006; Emura et al., 2011; Emura & Wang, 2012)
- Structural transformation models (Efron & Petrosian, 1994; Chiou et al., 2019)
- ! Depend on strong model assumptions

When the left truncation time and the event time are dependent:

- Copula models (Chaieb et al., 2006; Emura et al., 2011; Emura & Wang, 2012)
- Structural transformation models (Efron & Petrosian, 1994; Chiou et al., 2019)
- ! Depend on strong model assumptions
- Incorporate left truncation time as a covariate in the event time model (Gail et al., 2009; Mackenzie, 2012; Cheng & Wang 2015).
 - e.g., Entry-age adjusted age-scale model (Gail et al., 2009)
- ! Biologically unjustified; depend on model assumptions.

When the left truncation time and the event time are dependent:

- Copula models (Chaieb et al., 2006; Emura et al., 2011; Emura & Wang, 2012)
- Structural transformation models (Efron & Petrosian, 1994; Chiou et al., 2019)
- ! Depend on strong model assumptions
- Incorporate left truncation time as a covariate in the event time model (Gail et al., 2009; Mackenzie, 2012; Cheng & Wang 2015).
 - e.g., Entry-age adjusted age-scale model (Gail et al., 2009)
- ! Biologically unjustified; depend on model assumptions.
- ! Do not use covariate information.

When the dependence is captured by measured covariates:

In regression settings:

Cox model with risk set adjustment

For marginal survival probabilities:

- Inverse probability weighting (IPW) estimators (Vakulenko-Lagun et al., 2022).
- ! Sensitive to misspecification of the truncation model; inefficient.

When the dependence is captured by measured covariates:

In regression settings:

Cox model with risk set adjustment

For marginal survival probabilities:

- Inverse probability weighting (IPW) estimators (Vakulenko-Lagun et al., 2022).
- ! Sensitive to misspecification of the truncation model; inefficient.

Motivate us to seek estimators that

- Have more protection against model misspecification;
- More efficient;
- Allow us to incorporate nonparametric methods (which are known to have slower than root-*n* convergence) to obtain root-*n* consistent estimators.

Our contributions

- Derive the efficient influence curve (EIC) for the expectation of an arbitrarily transformed survival time.
- Construct EIC-based estimators that are shown to have favorable properties:
 - Model double robustness
 - Rate double robustness
 - Semiparametric efficiency
- Provide technical conditions for the asymptotic properties that appear to not have been carefully examined in the literature for time-to-event data.
- Our work represents the first attempt to construct doubly robust estimators in the presence of left truncation.
 - Does NOT fall under the established framework of coarsened data where doubly robust approaches are developed.

Notation and estimand

- Q left truncation time; T event time; Z covariates
- Full data if there were no left truncation
- We observe O = (Q, T, Z) only if Q < T
- F, G, H: the full data CDF's of T|Z, Q|Z and Z, respectively.
- superscript *: quantities related to the full data distribution, e.g., \mathbb{P}^* , \mathbb{E}^* , p^* , P^*
- without *: quantities related to the observed data distribution, e.g., \mathbb{P} , \mathbb{E} , p, P

Notation and estimand

- Q left truncation time; T event time; Z covariates
- Full data if there were no left truncation
- We observe O = (Q, T, Z) only if Q < T
- F, G, H: the full data CDF's of T|Z, Q|Z and Z, respectively.
- superscript *: quantities related to the full data distribution, e.g., \mathbb{P}^* , \mathbb{E}^* , p^* , P^*
- without *: quantities related to the observed data distribution, e.g., \mathbb{P} , \mathbb{E} , p, P
- Estimand: $\theta := \mathbb{E}^* \{ \nu(T) \}$, where ν is a given function.
 - e.g., when $\nu(t) = \mathbb{1}(t > t_0)$, $\theta = \mathbb{P}^*(T > t_0)$ (survival probability).
 - e.g., when $\nu(t) = \min(t, t_0)$, $\theta = \mathbb{E}^*\{\min(T, t_0)\}$ (RMST).

- **Onditional quasi-independence:** Q and T are conditionally "independent" given Z on the observed region $\{t > q\}$.
- **2** Positivity: G(T|Z) > 0 a.s.
- **Overlap**: There exist $0 < \tau_1 < \tau_2 < \infty$ and constants $\delta_1, \delta_2 > 0$ such that $T \ge \tau_1$ a.s. and $Q \le \tau_2$ a.s. in the full data; $1 F(\tau_2|Z) \ge \delta_1$ a.s., and $G(\tau_1|Z) \ge \delta_2$ a.s..

- Consider the semiparametric model under Assumptions 1 and 2.
- Assume the true distribution also satisfies Assumption 3.

Efficient influence curve and double robustness

Efficient influence curve:

$$\varphi(O; \theta, F, G, H) = \beta \cdot U(\theta; F, G),$$

where

$$U(\theta; F, G) = \frac{\nu(T) - \theta}{G(T|Z)} - \int_0^\infty \mathbb{E}^* \{ \nu(T) - \theta \mid T < v, Z \} \cdot \frac{F(v|Z)}{1 - F(v|Z)} \cdot \frac{d\overline{M}_Q(v; G)}{G(v|Z)},$$

and recall that $\beta = \mathbb{P}^*(Q < T)$.

• The semiparametric efficiency bound : $\mathbb{E}(\varphi^2)$.

Efficient influence curve and double robustness

Efficient influence curve:

$$\varphi(O; \theta, F, G, H) = \beta \cdot U(\theta; F, G),$$

where

$$U(\theta; F, G) = \frac{\nu(T) - \theta}{G(T|Z)} - \int_0^\infty \mathbb{E}^* \{ \nu(T) - \theta \mid T < \nu, Z \} \cdot \frac{F(\nu|Z)}{1 - F(\nu|Z)} \cdot \frac{dM_Q(\nu; G)}{G(\nu|Z)},$$

and recall that $\beta = \mathbb{P}^*(Q < T)$.

• The semiparametric efficiency bound : $\mathbb{E}(\varphi^2)$.

Double robustness:

$$\mathbb{E}\{U(\theta_0; F, G)\} = 0$$
 if either $F = F_0$ or $G = G_0$

Estimation

Let $\{O_i\}_{i=1}^n$ be an observed random sample of size n; $O_i = (Q_i, T_i, Z_i)$.

- First estimate F and G
- Then solve the following equation for θ :

$$\sum_{i=1}^n U_i(\theta; \hat{F}, \hat{G}) = 0$$

Estimation

Let $\{O_i\}_{i=1}^n$ be an observed random sample of size n; $O_i = (Q_i, T_i, Z_i)$.

- First estimate F and G
- Then solve the following equation for θ :

$$\sum_{i=1}^n U_i(\theta; \hat{F}, \hat{G}) = 0$$

Closed-form solution:

$$\hat{\theta}_{dr} = \left(\sum_{i=1}^{n} \left[\frac{1}{\hat{G}(T_{i}|Z_{i})} - \int_{0}^{\infty} \frac{\hat{F}(v|Z_{i})}{\hat{G}(v|Z_{i})\{1 - \hat{F}(v|Z_{i})\}} d\bar{M}_{Q,i}(v;\hat{G}) \right] \right)^{-1} \times \left(\sum_{i=1}^{n} \left[\frac{\nu(T_{i})}{\hat{G}(T_{i}|Z_{i})} - \int_{0}^{\infty} \frac{\int_{0}^{v} \nu(t) d\hat{F}(t|Z_{i})}{\hat{G}(v|Z_{i})\{1 - \hat{F}(v|Z_{i})\}} d\bar{M}_{Q,i}(v;\hat{G}) \right] \right)$$

Model double robustness under asymptotic linearity

Suppose

- \hat{F} and \hat{G} uniformly converge to F^* and G^* , respectively;
- \hat{F} and \hat{G} are asymptotically linear.

If either $F^* = F_0$ or $G^* = G_0$, then

$$\sqrt{n}(\hat{\theta}_{dr}-\theta_0)\stackrel{d}{\rightarrow} N(0,\sigma^2).$$

Furthermore, when both $F^* = F_0$ and $G^* = G_0$,

- $\hat{\theta}_{dr}$ acheives the semiparametric efficiency bound;
- σ^2 can be consistently estimated by $\hat{\sigma}^2$, where

$$\hat{\sigma}^2 = \hat{\beta}^2 \cdot \frac{1}{n} \sum_{i=1}^n U_i^2(\hat{\theta}_{dr}, \hat{F}, \hat{G}), \quad \hat{\beta} = \left\{ n^{-1} \sum_{i=1}^n 1/\hat{G}(T_i|Z_i) \right\}^{-1}.$$

Rate double robustness with cross-fitting

K-fold cross-fitting:

$$\sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{c}} U_{i} \{ \theta, \hat{F}^{(-k)}, \hat{G}^{(-k)} \} = 0 \quad \rightarrow \quad \hat{\theta}_{cf}$$

Out-of-sample cross integral product:

$$\mathcal{D}_{\dagger}(\hat{F}, \hat{G}; F_0, G_0) := \mathbb{E}\left(\mathbb{E}_{\dagger}\left[\left|\int_{\tau_1}^{\tau_2} \left\{a(v, Z_{\dagger}; \hat{F}) - a(v, Z_{\dagger}; F_0)\right\}\right.\right.\right.\right.\right.$$
$$\left.\cdot Y_{\dagger}(v) \ d\left\{\frac{1}{\hat{G}(v|Z_{\dagger})} - \frac{1}{G_0(v|Z_{\dagger})}\right\}\right|\right]\right),$$

where $a(v,Z;F)=\int_0^v \{\nu(t)-\theta\}dF(t|Z)/\{1-F(v|Z)\},\ Y_\dagger(v)=\mathbb{1}(Q_\dagger\leq v< T_\dagger).$

Rate double robustness

Suppose

- \hat{F} and \hat{G} are uniformly consistent;
- $\mathcal{D}_{\dagger}(\hat{F},\hat{G};F_0,G_0)=o(n^{-1/2}).$

We have

- $\sqrt{n}(\hat{\theta}_{cf} \theta_0) \stackrel{d}{\rightarrow} N(0, \sigma^2)$, where $\sigma^2 = \mathbb{E}(\varphi^2)$;
- ullet $\hat{ heta}_{cf}$ achieves the semiparametric efficiency bound;
- σ^2 can be consistently estimated by $\hat{\sigma}_{cf}^2$, where

$$\hat{\sigma}_{cf}^2 = \hat{\beta}_{cf}^2 \cdot \frac{1}{n} \sum_{k=1}^K \sum_{i \in \mathcal{I}_i} U_i^2 \{ \hat{\theta}_{cf}, \hat{F}^{(-k)}, \hat{G}^{(-k)} \},$$

$$\hat{\beta}_{cf} = \left\{ \frac{1}{n} \sum_{k=1}^{K} \sum_{i \in \mathcal{I}_{k}} \frac{1}{\hat{G}^{(-k)}(T_{i}|Z_{i})} \right\}^{-1}.$$

Nonparametric methods can be used to estimate F and G!

Application: CNS lymphoma data

• Data from a study on central nervous system (CNS) lymphoma (Wang et al., 2015) [Publicly available in the supplement of Vakulenko-Lagun et al. (2022)]

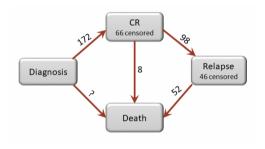


Figure from Vakulenko-Lagun et al., (2022) CR: complete response.

 \rightarrow Restrict to the 98 patients that were relapsed, for which the time is recorded.

- Quantity of interest: overall survival.
- The overall survival time is left truncated by time to relapse.
- Include two binary treatment variables:
 - chemotherapy
 - radiation therapy

Application: CNS lymphoma data

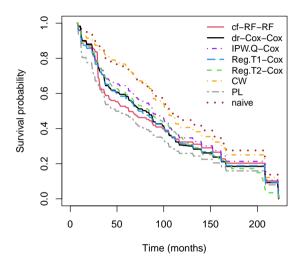
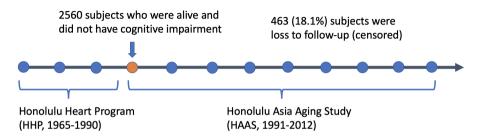


Figure: Estimates of the overall survival for the CNS lymphoma data.

Application: HAAS data



- Quantity of interest: Cognitive impairment-free survival on the age scale.
- Covariates:
 - Education (years)
 - ► APOE positive (yes/no)
 - Mid-life alcohol consumption (light/heavy)
 - ► Mid-life cigarette consumption (yes/no)

Application: HAAS data

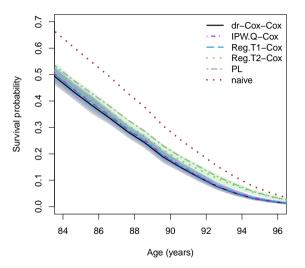


Figure: Estimated cognitive impairment-free survival and their 95% bootstrap confidence intervals (shaded, except for PL and naive) for the HAAS data.

Discussion

- We derived the efficient influence curve for the mean of an arbitrarily transformed survival time and construct doubly robust estimators.
- The rate doubly robust estimator is constructed via cross-fitting.
- The model doubly robust estimator does not require cross-fitting and is therefore more computationally efficient.

Extensions

• For the parameter θ that can be identified from an unbiased full data estimating function $u^*(T, Z; \theta)$. We consider the following AIPW estimating function for left truncation:

$$V(u^*;F,G) = \frac{u^*(T,Z;\theta)}{G(T|Z)} - \int_0^\infty \mathbb{E}^*\{u^*(T,Z;\theta) \mid T < v,Z\} \cdot \frac{F(v|Z)}{1 - F(v|Z)} \cdot \frac{d\bar{M}_Q(v;G)}{G(v|Z)}.$$

- For the hazard ratio under a marginal Cox model, the above AIPW approach for left truncation can be applied.
- When censoring is informative and the censoring time depend on covariates, the augmented IPCW together with the AIPW for left truncation can be applied.
- For causal settings with left truncation and right censoring, additional augmented IPTW can be applied.

Extensions

• For the parameter θ that can be identified from an unbiased full data estimating function $u^*(T, Z; \theta)$. We consider the following AIPW estimating function for left truncation:

$$V(u^*; F, G) = \frac{u^*(T, Z; \theta)}{G(T|Z)} - \int_0^\infty \mathbb{E}^* \{ u^*(T, Z; \theta) \mid T < v, Z \} \cdot \frac{F(v|Z)}{1 - F(v|Z)} \cdot \frac{d\bar{M}_Q(v; G)}{G(v|Z)}.$$

- For the hazard ratio under a marginal Cox model, the above AIPW approach for left truncation can be applied.
- When censoring is informative and the censoring time depend on covariates, the augmented IPCW together with the AIPW for left truncation can be applied.
- For causal settings with left truncation and right censoring, additional augmented IPTW can be applied.

ArXiv preprint: arXiv:2208.06836

Code in Github: https://github.com/wangyuyao98/left_trunc_DR

Appendix

f, g, h: the densities of T|Z, Q|Z and Z, respectively.

Assumption 1 (Conditional quasi-independence)

The observed data density for (Q, T, Z) satisfies

$$p_{Q,T,Z}(q,t,z) = \left\{ egin{array}{ll} f(t|z)g(q|z)h(z)/eta, & ext{if } t>q, \ 0, & ext{otherwise}, \end{array}
ight.$$

where $\beta = \mathbb{P}^*(Q < T) = \int \mathbb{1}(q < t)f(t|z)g(q|z)h(z) dt dq dz$.

Assumption 2 (Positivity)

G(T|Z) > 0 a.s.

Assumption 3 (Overlap)

There exists $0 < \tau_1 < \tau_2 < \infty$ such that $T \ge \tau_1$ a.s., $Q \le \tau_2$ a.s.; also $G(\tau_1|Z) \ge \delta_1$ a.s. and $F(\tau_2|Z) \le 1 - \delta_2$ a.s. for some constants $\delta_1 > 0$ and $\delta_2 > 0$.

Assumption 4 (Uniform Convergence)

There exist F^* and G^* such that

$$\|\hat{F}(\cdot|Z) - F^*(\cdot|Z)\|_{\sup,2} = o(1), \quad \|\hat{G}(\cdot|Z) - G^*(\cdot|Z)\|_{\sup,2} = o(1).$$

Assumption 5 (Asymptotic Linearity)

For fixed $(t,z) \in [\tau_1,\tau_2] \times \mathcal{Z}$, $\hat{F}(t|z)$ and $\hat{G}(t|z)$ are regular and asymptotically linear estimators for F(t|z) and G(t|z) with influence functions $\xi_1(t,z,O)$ and $\xi_2(t,z,O)$, respectively. In addition, denote

$$R_1(t,z) = \hat{F}(t|z) - F^*(t|z) - \frac{1}{n} \sum_{i=1}^n \xi_1(t,z,O_i),$$

$$R_2(t,z) = \hat{G}(t|z) - G^*(t|z) - \frac{1}{n} \sum_{i=1}^n \xi_2(t,z,O_i).$$

Suppose
$$||R_1(\cdot, Z)||_{\sup, 2} = o(n^{-1/2})$$
, $||R_2(\cdot, Z)||_{\sup, 2} = o(n^{-1/2})$, and either $||R_1(\cdot, Z)||_{TV, 2} = o(1)$ or $||R_2(\cdot, Z)||_{TV, 2} = o(1)$.

Inverse probability weighting (IPW) identification

• Under Assumptions 1 and 2,

$$heta = \mathbb{E}\left\{ rac{
u(T)}{G(T|Z)}
ight\} / \mathbb{E}\left\{ rac{1}{G(T|Z)}
ight\}.$$

• Let α be the reverse time hazard function of Q given Z in the full data:

$$\alpha(q|z) := \lim_{h \to 0+} \frac{\mathbb{P}^* (q - h < Q \le q | Q \le q, Z = z)}{h}$$

$$= \lim_{h \to 0+} \frac{\mathbb{P}^* (q - h < Q \le q | Z = z)}{h \, \mathbb{P}^* (Q \le q | Z = z)} = \frac{\partial G(q|z)/\partial q}{G(q|z)}.$$

$$\implies G(q|z) = \exp\{-\int_q^\infty \alpha(t|z)dt\}.$$

 \bullet α can be identified:

$$\alpha(q|z) = \frac{p_{Q|Z}(q|z)}{\mathbb{P}(Q \le q < T|Z = z)}.$$

 \implies G can be identified from the observed data distribution.

Reverse time counting process and backwards martingale

For $t \geq 0$, let

$$egin{aligned} ar{\mathcal{N}}_Q(t) &= \mathbb{1}(t \leq Q < \mathcal{T}), \ ar{\mathcal{F}}_t &= \sigma\left\{\mathcal{Z}, \mathbb{1}(Q < \mathcal{T}), \mathbb{1}(s \leq Q < \mathcal{T}), \mathbb{1}(s \leq \mathcal{T}) : s \geq t
ight\}. \end{aligned}$$

Define

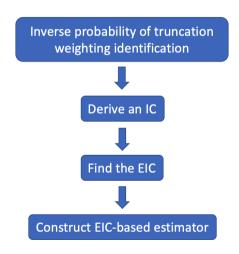
$$ar{A}_Q(t;G) = \int_t^\infty \mathbb{1}(Q \leq s < T) lpha(s|Z) ds = \int_t^\infty \mathbb{1}(Q \leq s < T) rac{dG(s|Z)}{G(s|Z)}.$$

Then

$$ar{M}_Q(t;G) := ar{N}_Q(t) - ar{A}_Q(t;G)$$

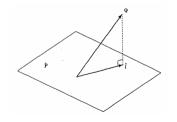
is a backwards martingale with respect to $\{\bar{\mathcal{F}}_t\}_{t\geq 0}$ in the observed data.

Steps for constructing the proposed estimators



$$heta = \mathbb{E} \left\{ rac{
u(au)}{G(au| au)}
ight\} igg/ \mathbb{E} \left\{ rac{1}{G(au| au)}
ight\}$$

 $G \leftarrow$ reverse time hazard conditional on Z \uparrow observed data distribution.



(Figure from Bickel et al., 1993)

 \dot{P} - tangent space; Ψ - IC; $\tilde{\ell}$ - EIC.

Deriving the EIC

• Derive an influence curve (IC)

$$\left. \frac{\partial}{\partial \epsilon} \theta(P_{\epsilon}) \right|_{\epsilon=0} = \mathbb{E} \left\{ \varphi(O) \mathcal{S}(O) \right\}, \quad \mathcal{S}(O) = \left. \frac{\partial}{\partial \epsilon} \log p_{\epsilon}(O) \right|_{\epsilon=0}$$

ullet Project the IC onto the tangent space o EIC

$$\varphi(O; \theta, F, G, H) = \beta \cdot U(\theta; F, G)$$

where

$$U(\theta; F, G)$$

$$= \frac{\nu(T) - \theta}{G(T|Z)} - \int_0^\infty \mathbb{E}^* \{ \nu(T) - \theta \mid T < v, Z \} \cdot \frac{F(v|Z)}{1 - F(v|Z)} \cdot \frac{d\bar{M}_Q(v; G)}{G(v|Z)}$$

Recall that
$$\beta = \mathbb{P}^*(Q < T)$$

• The semiparametric efficiency bound : $\mathbb{E}(\varphi^2)$.

Two special cases

• By setting $\hat{F} \equiv 0 \rightarrow IPW$ estimator

$$\hat{ heta}_{\mathsf{IPW.Q}} = \left\{ \sum_{i=1}^n rac{
u(T_i)}{\hat{G}(T_i|Z_i)}
ight\} / \left\{ \sum_{i=1}^n rac{1}{\hat{G}(T_i|Z_i)}
ight\},$$

ullet By setting $\hat{G}\equiv 1 \ o$ Regression-based estimator

$$egin{aligned} \hat{ heta}_{\mathsf{Reg.T1}} &= \left\{ \sum_{i=1}^{n} rac{1}{1 - \hat{F}(Q_i|Z_i)}
ight\}^{-1} \ &\left[\sum_{i=1}^{n} rac{
u(\mathcal{T}_i)\{1 - \hat{F}(Q_i|Z_i)\} + \int_{0}^{Q_i}
u(t)d\hat{F}(t|Z_i)}{1 - \hat{F}(Q_i|Z_i)}
ight]. \end{aligned}$$

- $\blacktriangleright [\nu(T)\{1-F(Q|Z)\} + \int_0^Q \nu(t)dF(t|Z)] \text{ identifies } \mathbb{E}^* \{\nu(T)|Q,Z\}.$
- Another regression based estimator is

$$\hat{\theta}_{\mathsf{Reg.T2}} = \left[\sum_{i=1}^{n} \frac{\hat{\mathbb{E}}^* \{ \nu(T_i) | Z_i \}}{1 - \hat{F}(Q_i | Z_i)} \right] / \left\{ \sum_{i=1}^{n} \frac{1}{1 - \hat{F}(Q_i | Z_i)} \right\},$$

Some norm notation

For a random function X(t, z) with $t \in [\tau_1, \tau_2]$ and $z \in \mathcal{Z}$, define

$$\|X(\cdot, Z)\|_{\sup, 2}^2 = \mathbb{E}\left\{\sup_{t \in [\tau_1, \tau_2]} |X(t, Z)|^2\right\},$$

 $\|X(\cdot, Z)\|_{\mathsf{TV}, 2}^2 = \mathbb{E}\left[\mathsf{TV}\{X(\cdot, Z)\}^2\right],$

- TV{ $X(\cdot,z)$ } = $\sup_{\mathcal{P}} \sum_{j=1}^{J} |X(x_j,z) X(x_{j-1},z)|$ is the total variation of $X(\cdot,z)$ on the interval $[\tau_1,\tau_2]$
- \mathcal{P} is the set of all possible partitions $\tau_1 = x_0 < x_1 < ... < x_J = \tau_2$ of $[\tau_1, \tau_2]$

Assumptions for \hat{F} and \hat{G} for $\hat{\theta}_{dr}$

• Uniform convergence: There exist F^* and G^* such that

$$\|\hat{F}(\cdot|Z) - F^*(\cdot|Z)\|_{\sup,2} = o(1), \quad \|\hat{G}(\cdot|Z) - G^*(\cdot|Z)\|_{\sup,2} = o(1).$$

• Asymptotic linearity:

$$\hat{F}(t|z) - F^*(t|z) = \frac{1}{n} \sum_{i=1}^n \xi_1(t, z, O_i) + R_1(t, z),$$

$$\hat{G}(t|z) - G^*(t|z) = \frac{1}{n} \sum_{i=1}^n \xi_2(t, z, O_i) + R_2(t, z).$$

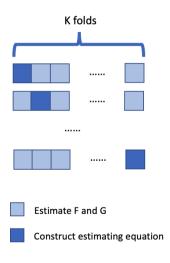
where
$$||R_1(\cdot, Z)||_{\sup, 2} = o(n^{-1/2})$$
, $||R_2(\cdot, Z)||_{\sup, 2} = o(n^{-1/2})$, and either $||R_1(\cdot, Z)||_{TV, 2} = o(1)$ or $||R_2(\cdot, Z)||_{TV, 2} = o(1)$.

ullet e.g., it is satisfied when Cox model is used to estimate F and G.

K-fold cross-fitting

- 1: Split the data into K folds of (almost) equal size with the index sets $\mathcal{I}_1, ..., \mathcal{I}_K$.
- 2: **for** k = 1 to K **do**
- 3: Estimate F and G with the out-of-k-fold data \Longrightarrow $\hat{F}^{(-k)}$ and $\hat{G}^{(-k)}$
- 4: end for
- 5: Obtain $\hat{\theta}_{cf}$ by solving

$$\sum_{k=1}^{K} \sum_{i \in \mathcal{I}_k} U_i \{ \theta, \hat{F}^{(-k)}, \hat{G}^{(-k)} \} = 0.$$



Norm notation and cross integral product

Let $\mathcal{O} = \{(Q_i, T_i, Z_i) : i = 1, ..., m\}$ denote the data used to obtain \hat{F} and \hat{G} , and let $O_{\dagger} = (Q_{\dagger}, T_{\dagger}, Z_{\dagger})$ be an copy of the data that is independent of, but from the same distribution as \mathcal{O} .

$$\|\hat{F} - F_0\|_{\dagger, \sup, 2}^2 := \mathbb{E}\left(\mathbb{E}_{\dagger}\left[\left\{\sup_{t \in [au_1, au_2]}\left|\hat{F}(t|Z_{\dagger}) - F_0(t|Z_{\dagger})\right|
ight\}^2
ight]
ight), \ \|\hat{G} - G_0\|_{\dagger, \sup, 2}^2 := \mathbb{E}\left(\mathbb{E}_{\dagger}\left[\left\{\sup_{t \in [au_1, au_2]}\left|\hat{G}(t|Z_{\dagger}) - G_0(t|Z_{\dagger})\right|
ight\}^2
ight]
ight).$$

Out-of-sample cross integral product:

$$\mathcal{D}_{\dagger}(\hat{F}, \hat{G}; F_0, G_0) := \mathbb{E}\left(\mathbb{E}_{\dagger}\left[\left|\int_{\tau_1}^{\tau_2} \left\{a(v, Z_{\dagger}; \hat{F}) - a(v, Z_{\dagger}; F_0)\right\}\right.\right.\right.\right.$$
$$\left.\cdot \frac{Y_{\dagger}(v)}{d} \left\{\frac{1}{\hat{G}(v|Z_{\dagger})} - \frac{1}{G_0(v|Z_{\dagger})}\right\}\right|\right]\right),$$

where $a(v,Z;F) = \int_0^v \{\nu(t) - \theta\} dF(t|Z)/\{1 - F(v|Z)\}, \quad Y_\dagger(v) = \mathbb{1}(Q_\dagger \leq v < T_\dagger).$

Assumptions on \hat{F} and \hat{G} for $\hat{\theta}_{cf}$

• Uniform Consistency:

$$\|\hat{F} - F_0\|_{\dagger, \sup, 2} = o(1), \quad \|\hat{G} - G_0\|_{\dagger, \sup, 2} = o(1)$$

• Product rate condition: $\mathcal{D}_{\dagger}(\hat{F},\hat{G};F_0,G_0)=o(n^{-1/2}).$

Extensions to handle right censoring

C: censoring time; $X := \min(T, C)$; $\Delta := \mathbb{1}(T < C)$ $S_c(t) := \mathbb{P}(C > t)$, $S_D(t) := \mathbb{P}(D > t)$, where D = C - QAssume noninformative censoring.

Two scenarios:

- Censoring can happen before truncation
 - ▶ $\mathbb{P}^*(C < Q) > 0$, subjects with Q < X are included.

$$U_{c1}(\theta; F_x, G, S_c) = \frac{\Delta\{\nu(X) - \theta\}}{S_c(X)G(X|Z)} - \int_0^\infty \frac{\int_0^v \Delta\{\nu(x) - \theta\}/S_c(x)dF_x(x|Z)}{1 - F(v|Z)} \cdot \frac{d\tilde{M}_Q(v; G)}{G(v|Z)}.$$

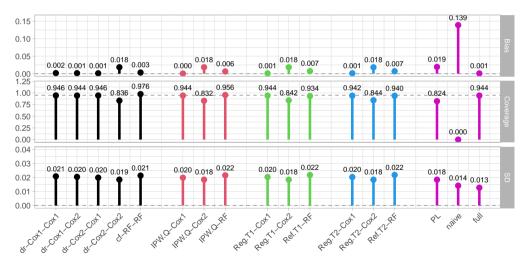
- Censoring always after truncation
 - ▶ $\mathbb{P}^*(Q < C) = 1$, subjects with Q < T are included.

$$U_{c2}(\theta; F, G, S_D) = \frac{\Delta}{S_D(X-Q)} \left[\frac{\nu(X) - \theta}{G(X|Z)} - \int_0^\infty \frac{\int_0^v \{\nu(t) - \theta\} dF(t|z)}{1 - F(v|Z)} \cdot \frac{d\tilde{M}_Q(v; G)}{G(v|Z)} \right].$$

Simulation results

500 simulated data sets each with sample size 1000.

Truncation rate: 29.5%; $\theta_0 = P^*(T > 3) = 0.576$.



Simulation

The models in red are misspecified.

SD: standard deviation, SE: standard error, CP: coverage probability.

Estimator	bias	SD	SE/boot SE	CP/boot CP
dr-Cox1-Cox1	-0.0016	0.021	0.020/0.020	0.948/0.946
dr-Cox1-Cox2	-0.0014	0.020	0.019/0.020	0.930/0.944
dr-Cox2-Cox1	-0.0010	0.020	0.019/0.020	0.938/0.946
dr-Cox2-Cox2	0.0184	0.019	0.018/0.019	0.838/0.836
cf-RF-RF	0.0032	0.021	0.023/0.025	0.966/0.976
IPW.Q-Cox1	-0.0004	0.020	0.018/0.020	0.924/0.944
IPW.Q-Cox2	0.0184	0.018	0.017/0.019	0.814/0.832
IPW.Q-RF	-0.0064	0.022	0.019/0.022	0.886/0.956
Reg.T1-Cox1	-0.0008	0.020	- /0.020	- /0.944
Reg.T1-Cox2	0.0183	0.018	- /0.019	- /0.842
Reg.T1-RF	-0.0073	0.022	- /0.022	- /0.934
Reg.T2-Cox1	-0.0010	0.020	- /0.020	- /0.942
Reg.T2-Cox2	0.0181	0.018	- /0.019	- /0.844
Reg.T2-RF	-0.0070	0.022	- /0.022	- /0.940
PL	0.0193	0.018	- /0.018	- /0.824
naive	0.1389	0.014	0.014/0.014	0.000/0.000
full data	-0.0007	0.013	0.013/0.013	0.956/0.944

CNS lymphoma data

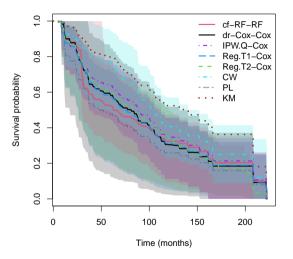


Figure: Estimates of the overall survival for the CNS lymphoma data with their 95% bootstrap confidence intervals.